20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

724 D. Bucur / Journal of Functional Analysis 236 (2006) 712–725<br />

there exists a subsequence of the sets {vn >tr} and a set Ωtr , such that {vnk >tr} γ -converges<br />

to Ωtr . Consequently, by a diagonal extraction proce<strong>du</strong>re as in Theorem 3.1, we construct an<br />

obstac<strong>le</strong> h such that {h >tr} =Ωtr and the sequence vnk converges in the sense of obstac<strong>le</strong>s<br />

to h.Fromtheγ-convergence of the <strong>le</strong>vel sets, we get (v − tr) + ∈ W 1,p<br />

(Ωtr 0 ), hence h v.This<br />

contradicts (13), from the Mosco convergence.<br />

It is need<strong>le</strong>ss to say that vn are not, in general, p-superharmonic.<br />

Remark 4.3. In [3], the authors give an examp<strong>le</strong> of a sequence of positive functions vn which<br />

are not superharmonic such that inequality (1) fails to be true for a suitab<strong>le</strong> sequence un of superharmonic<br />

functions. This construction is done around the pioneering result of Cioranescu and<br />

Murat [10] on the “strange term” appearing in the re<strong>la</strong>xation process through the γ -convergence.<br />

The presence of the strange term is an argument of non-γ -convergence of obstac<strong>le</strong>s! So, from<br />

this point of view it is not <strong>sur</strong>prising that inequality (1) is vio<strong>la</strong>ted, although the choice of un has<br />

to be done carefully.<br />

Remark 4.4. We give in the sequel an examp<strong>le</strong> of non-superharmonic functions vn for which<br />

the second assertion of Theorem 3.1 holds. Let η ∈ C1 (R2 , R) be a periodic function of period<br />

(l1,l2) and ϕ ∈ C∞ 0 (Ω). We consi<strong>de</strong>r the sequence of functions<br />

<br />

x<br />

vn = wΩ + ϕεη .<br />

ε<br />

It is c<strong>le</strong>ar that this sequence converges weakly but not strongly in H 1 0 (Ω) to v = wΩ, provi<strong>de</strong>d<br />

that ϕ or η are not the zero functions and ε ↓ 0. Inequality (1) is satisfied for all admissib<strong>le</strong><br />

sequences (un). This is a consequence of the obstac<strong>le</strong> convergence of vn towards v which can be<br />

easily proved. Neverthe<strong>le</strong>ss for small ε, the functions vn are not superharmonic!<br />

References<br />

[1] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.<br />

[2] L. Boccardo, F. Murat, Almost everywhere convergence of the <strong>gradient</strong>s of solutions to elliptic and parabolic equations,<br />

Nonlinear Anal. 19 (6) (1992) 581–597.<br />

[3] M. Briane, G. Mokobodzki, F. Murat, Variations on a strange <strong>semi</strong>-continuity result, J. Funct. Anal. 227 (1) (2005)<br />

78–112.<br />

[4] M. Briane, G. Mokobodzki, F. Murat, Semi-strong convergence of sequence satisfying a variational inequality,<br />

preprint, http://www.insa-rennes.fr/~mbriane.<br />

[5] D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Prob<strong>le</strong>ms, Progr. in Nonlinear Differential Equations,<br />

vol. 65, Birkhäuser, Basel, 2005.<br />

[6] D. Bucur, P. Trebeschi, Shape optimisation prob<strong>le</strong>ms governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh<br />

Sect. A 128 (5) (1998) 945–963.<br />

[7] D. Bucur, P. Trebeschi, A new re<strong>la</strong>xation space for obstac<strong>le</strong>s, Acta Appl. Math. 79 (3) (2003) 177–194.<br />

[8] D. Bucur, G. Buttazzo, P. Trebeschi, An existence result for optimal obstac<strong>le</strong>s, J. Funct. Anal. 162 (1) (1999) 96–<br />

119.<br />

[9] J. Casado Diaz, A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains, SIAM J. Math.<br />

Anal. 31 (3) (2000) 581–624.<br />

[10] D. Cioranescu, F. Murat, Un terme étrange venu d’ail<strong>le</strong>urs, in: Nonlinear Partial Differential Equations and Their<br />

Applications, Collège <strong>de</strong> France Seminar, vol. II, Paris, 1979/1980, in: Res. Notes in Math., vol. 60, Pitman, Boston,<br />

MA, 1982, pp. 98–138, 389–390.<br />

[11] A. Dall’Acqua, G. Sweers, On domains for which the c<strong>la</strong>mped p<strong>la</strong>te system is positivity preserving, in: Partial<br />

Differential Equations and Inverse Prob<strong>le</strong>ms, in: Contemp. Math., vol. 362, Amer. Math. Soc., Provi<strong>de</strong>nce, RI,<br />

2004, pp. 133–144.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!