20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

590 A. Porretta, L. Véron / Journal of Functional Analysis 236 (2006) 581–591<br />

where P(r)is <strong>de</strong>fined in (2.22). Letting h tend to zero we obtain<br />

d 2 u(r, e tAj ˜σ)<br />

dt 2<br />

<br />

<br />

<br />

t=0<br />

Using (2.18), and the fact that ˜σ is arbitrary, we <strong>de</strong>rive<br />

˜LP (r) for r ∈[r0,R). (2.26)<br />

su(r, σ ) (N − 1) ˜LP(r) ∀(r, σ ) ∈[r0,R)× S N−1 . (2.27)<br />

Step 3. Estimate on the radial <strong>de</strong>rivative.<br />

Using (2.22) and (2.27) we <strong>de</strong><strong>du</strong>ce that<br />

Therefore<br />

<br />

∂<br />

r<br />

∂r<br />

(su) + (x) = o(1) uniformly as |x|→R.<br />

<br />

N−1 ∂u<br />

= r<br />

∂r<br />

N−1<br />

<br />

g(u) − 1<br />

su<br />

r2 <br />

r N−1 g∞(u) − o(1)<br />

uniformly as r → R. (2.28)<br />

Now one can easily conclu<strong>de</strong>: <strong>le</strong>t z(r) <strong>de</strong>note the minimal (hence radial) solution of<br />

⎧<br />

⎨ z = g∞(z) in BR \ Br0<br />

⎩<br />

,<br />

z = min∂Br u<br />

0<br />

on ∂Br0 ,<br />

limr→R z =∞.<br />

We have u(x) z(x) if |x| ∈[r0,R), hence g∞(u) g∞(z). Because this <strong>la</strong>st function is not<br />

integrab<strong>le</strong> near ∂BR, one obtains<br />

lim<br />

r<br />

r→R<br />

r0<br />

C<strong>le</strong>arly (2.28) implies<br />

s N−1 <br />

g∞ u(s, σ ) ds →∞ uniformly for σ ∈ SN−1 .<br />

∂u r→R<br />

(r, σ ) −−−→∞<br />

∂r<br />

uniformly for σ ∈ SN−1 .<br />

This comp<strong>le</strong>tes the proof of (2.17). ✷<br />

Proof of Theorem 2.2. By assumptions (2.3) and (2.4), and Lemma 2.2, we <strong>de</strong><strong>du</strong>ce that u satisfies<br />

(2.5), hence we apply Lemma 2.1 to conclu<strong>de</strong>. ✷<br />

Finally, <strong>le</strong>t us point out that thanks to Lemma 2.2 and using the moving p<strong>la</strong>ne method as in<br />

Theorem 2.1, we can <strong>de</strong>rive a result <strong>de</strong>scribing the boundary behaviour of any solution of<br />

<br />

−u + g(u) = 0 inΓR,r ={x ∈ RN : r

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!