20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

680 S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634–681<br />

Using (76) we have<br />

fk ˆλkA k k (Ck) A k k Ck(ˆλ) −1 = ˆλkA kk+1...m<br />

kk+1...m (Cm) A kk+1...m<br />

kk+1...m Cm(ˆλ) −1 hence I k m = fkA k k (Cm(ˆλ)) − ˆλkA k k (Cm(λ [k] )) I k m (ˆλ), where the function I k m (ˆλ) is <strong>de</strong>fined by<br />

kk+1...m<br />

Akk+1...m Cm(ˆλ) −1 kk+1...m<br />

A<br />

∅⊆δ⊆{k+1,k+2,...,m}<br />

<br />

Cm(ˆλ) − ˆλkA k <br />

k Cm ˆλ [k]<br />

<br />

<br />

I k m (ˆλ) := ˆλk<br />

kk+1...m (Cm)A k k<br />

<br />

= ˆλk<br />

kk+1...m<br />

Akk+1...m Cm(ˆλ) <br />

−1 A<br />

<br />

<br />

kk+1...m<br />

kk+1...m (Cm) Ak k (Cm(ˆλ [k] ))<br />

A kk+1...m<br />

kk+1...m (Cm(ˆλ)) Ak k (Cm(ˆλ))<br />

<br />

<br />

(80), (81) <br />

= ˆλk<br />

kk+1...m<br />

Akk+1...m Cm(ˆλ) −1 <br />

<br />

A<br />

×<br />

ˆλδ <br />

<br />

kk+1...m<br />

kk+1...m (Cm) Ak∪δ k∪δ (Cm)<br />

A kk+1...m<br />

kk+1...m (Cm(ˆλ)) Ak∪δ k∪δ (Cm(ˆλ {k} <br />

<br />

<br />

))<br />

.<br />

Using (26) or (27) we conclu<strong>de</strong> for λ = (0,λ2,...,λm) ∈ C m<br />

Finally we obtain<br />

I k m (ˆλ) = ˆλk<br />

A kk+1...m<br />

kk+1...m Cm(λ) =<br />

A k∪δ<br />

{k}<br />

k∪δ Cm λ =<br />

×<br />

kk+1...m<br />

Akk+1...m Cm(ˆλ) −1 <br />

∅⊆γ ⊆{2,3,...,k−1}<br />

<br />

∅⊆γ ⊆{2,3,...,k−1}<br />

<br />

∅⊆γ ⊆{2,3,...,k−1}<br />

<br />

<br />

ˆλγ<br />

<br />

<br />

<br />

γ ∪{k,k+1,...m}<br />

λγ Aγ ∪{k,k+1,...m} (Cm),<br />

<br />

∅⊆δ⊆{k+1,k+2,...,m}<br />

A kk+1...m<br />

kk+1...m (Cm) A<br />

A k∪δ<br />

k∪δ (Cm) A<br />

γ ∪{k}∪δ<br />

λγ Aγ ∪{k}∪δ (Cm).<br />

ˆλδ<br />

γ ∪{k,k+1,...m}<br />

γ ∪{k,k+1,...m} (Cm)<br />

γ ∪{k}∪δ<br />

γ ∪{k}∪δ (Cm)<br />

<br />

<br />

<br />

0<br />

<br />

<strong>du</strong>e to the Hadamard–Fisher’s inequality (Lemma A.6), for α ={k,k + 1,...,m} and β = γ ∪<br />

{k}∪δ. This comp<strong>le</strong>tes the proof of Lemma 16. ✷<br />

References<br />

[1] S. Albeverio, R. Höegh-Krohn, The energy representation of Sobo<strong>le</strong>v–Lie group, Compos. Math. 36 (1978) 37–52.<br />

[2] S. Albeverio, A. Kosyak, Quasiregu<strong>la</strong>r representations of the infinite-dimensional Borel group, J. Funct.<br />

Anal. 218 (2) (2005) 445–474.<br />

[3] S. Albeverio, A. Kosyak, Group action, quasi-invariant mea<strong>sur</strong>es and quasiregu<strong>la</strong>r representations of the infinitedimensional<br />

nilpotent group, Contemp. Math. 385 (2005) 259–280.<br />

[4] S. Albeverio, R. Höegh-Krohn, D. Testard, Irre<strong>du</strong>cibility and re<strong>du</strong>cibility for the energy representation of a group<br />

of mapping of a Riemannian manifold into a compact Lie group, J. Funct. Anal. 41 (1981) 378–396.<br />

[5] S. Albeverio, R. Höegh-Krohn, D. Testard, A. Vershik, Factorial representations of path groups, J. Funct. Anal. 51<br />

(1983) 115–131.<br />

[6] S. Albeverio, R. Höegh-Krohn, J. Marion, D. Testard, B. Torrésani, Noncommutative Distributions, Unitary Representation<br />

of Gauge Groups and Algebras, Monogr. Textbooks Pure Appl. Math., vol. 175, Dekker, New York,<br />

1993.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!