20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

528 A. Olofsson / Journal of Functional Analysis 236 (2006) 517–545<br />

V ∗ ∗<br />

n Sn Sn<br />

<br />

−1Vn<br />

=<br />

n−1<br />

(−1) k<br />

k=0<br />

n−1<br />

=<br />

k=0<br />

(−1) k<br />

<br />

n<br />

T<br />

k + 1<br />

∗k V ∗ k<br />

n VnT<br />

<br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

in L(H),<br />

where the <strong>la</strong>st equality follows by V ∗ n Vn = I in L(H). This comp<strong>le</strong>tes the proof of the<br />

<strong>le</strong>mma. ✷<br />

We can now give a first <strong>de</strong>scription of the wan<strong>de</strong>ring subspace En,T .<br />

Theorem 2.1. Let T ∈ L(H) be an n-hypercontraction in the c<strong>la</strong>ss C0·. Then a function f in<br />

An(Dn,T ) belongs to the wan<strong>de</strong>ring subspace En,T for In,T if and only if it has the form<br />

f = a0 + S ′ nVnx ∗ −1Vnx<br />

= a0 + Sn Sn Sn<br />

for some e<strong>le</strong>ments a0 ∈ Dn,T and x ∈ H such that<br />

Proof. Notice first that<br />

and simi<strong>la</strong>rly that<br />

Here<br />

Dn,T a0 + T ∗<br />

<br />

n−1<br />

(−1) k<br />

k=0<br />

In,T = An(Dn,T ) ⊖ Vn(H) = ker V ∗ n ,<br />

En,T = In,T ⊖ Sn(In,T ) = ker(Sn|In,T )∗ .<br />

(Sn|In,T )∗ = PnS ∗ n = I − VnV ∗ ∗<br />

n Sn <br />

n<br />

T<br />

k + 1<br />

∗k T k<br />

<br />

x = 0. (2.2)<br />

by Lemma 2.1. An e<strong>le</strong>ment f in An(Dn,T ) thus belongs to the wan<strong>de</strong>ring subspace En,T for In,T<br />

if and only if V ∗ n f = 0 and (I − VnV ∗ n )S∗ nf = 0.<br />

We consi<strong>de</strong>r first the equation (I − VnV ∗ n )S∗ nf = 0. This equation can be rewritten as S∗ nf =<br />

VnV ∗ n S∗ n f . We apply the operator (S∗ n Sn) −1 to obtain that<br />

Lnf = S ∗ nSn −1S∗ nf = S ∗ nSn −1VnV ∗ n S∗ nf = S ∗ nSn −1Vnx, where x = V ∗ n S∗ nf ∈ H. We now have that<br />

∗ −1Vnx<br />

f = a0 + SnLnf = a0 + Sn Sn Sn = a0 + S ′ nVnx, (2.3)<br />

where a0 ∈ Dn,T and x ∈ H. Conversely, if f in An(Dn,T ) is of the form (2.3), then<br />

<br />

I − VnV ∗ ∗<br />

n Snf = I − VnV ∗ n Vnx = 0,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!