20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634–681 677<br />

To <strong>de</strong>fine the function I k+1<br />

k+1 k+1<br />

k+1 (λ) with Ik+1 Ik+1 (ˆλ) we have<br />

I k+1<br />

k+1<br />

k+1<br />

= fk+1Ak+1 Ck+1(ˆλ) − ˆλk+1A k+1<br />

k+1 (Ck+1)<br />

<br />

= fk + f k+1 A k+1<br />

Ck+1(λ) − ˆλk+1A k+1<br />

(75)<br />

(76)<br />

<br />

(54)<br />

<br />

k+1<br />

ˆλkA kk+1<br />

kk+1 (Ck+1)<br />

A kk+1<br />

kk+1<br />

(Ck+1(λ)) + e<br />

ˆλkA kk+1<br />

kk+1 (Ck+1)<br />

A kk+1<br />

kk+1<br />

:= I k+1<br />

k+1 (ˆλ),<br />

(Ck+1(λ)) + e<br />

k<br />

r=1<br />

k<br />

r=1<br />

Ψ rk<br />

Ψ rk<br />

0<br />

<br />

<br />

A k+1<br />

k+1<br />

A k+1<br />

k+1<br />

k+1 (Ck+1) λ=ˆλ<br />

Ck+1(λ) − ˆλk+1A k+1<br />

Ck+1(λ) − ˆλk+1A k+1<br />

where the function I k+1<br />

pq<br />

k+1 (λ) is <strong>de</strong>fined by (see <strong>de</strong>finition (54) of Ψ0 ):<br />

r=2<br />

<br />

<br />

<br />

k+1 (Ck+1) <br />

<br />

λ=ˆλ<br />

<br />

<br />

<br />

k+1 (Ck+1) <br />

<br />

λ=ˆλ<br />

I k+1<br />

<br />

ˆλkM<br />

k+1 (λ) =<br />

12...k−1<br />

12...k−1 (Ck+1)<br />

M 12...k−1<br />

12...k−1 (Ck+1(λ)) + c2 k (M 1k<br />

+<br />

c11<br />

r=2<br />

12...r−1r<br />

12...r−1k<br />

(Ck+1))<br />

2<br />

M 12...r−1<br />

12...r−1<br />

(Ck+1)M12...r 12...r (Ck+1(λ))<br />

<br />

× M 12...k<br />

12...k Ck+1(λ) − ˆλk+1M 12...k<br />

12...k (Ck+1)<br />

<br />

ˆλkM<br />

=<br />

12...k−1<br />

12...k−1 (Ck+1)<br />

M 12...k−1<br />

12...k−1 (Ck+1(λ)) + c2 k−1<br />

(M 1k<br />

+<br />

c11<br />

12...r−1r<br />

12...r−1k<br />

(Ck+1))<br />

2<br />

M 12...r−1<br />

12...r−1<br />

(Ck+1)M12...r 12...r (Ck+1(λ))<br />

<br />

× M 12...k<br />

12...k Ck+1(λ) + (M12...k<br />

12...k<br />

(Ck+1))<br />

2<br />

M 12...k−1<br />

12...k−1 (Ck+1) − ˆλk+1M 12...k<br />

12...k (Ck+1).<br />

Finally we have the following expression for I k+1<br />

k+1 (λ) with corresponding positive constants ar,<br />

2 r k − 1 (<strong>de</strong>pending on k) and b1 ∈ R:<br />

I k+1<br />

k+1 (λ) =<br />

=<br />

<br />

<br />

k−1<br />

a1 +<br />

r=2<br />

k−1<br />

ar<br />

a1 +<br />

Gr(λ)<br />

r=2<br />

ar<br />

M12...r 12...r (Ck+1(λ))<br />

<br />

<br />

Gk(λ) + b1.<br />

M 12...k<br />

12...k<br />

By (37) of Lemma A.7 we conclu<strong>de</strong> that for λr 0, 2 r k, holds<br />

∂I k+1<br />

k+1 (λ)<br />

∂λp<br />

∂I k+1<br />

k+1 (λ)<br />

∂λk<br />

=<br />

<br />

∂Gk(λ)<br />

= a1<br />

∂λp<br />

k−1<br />

a1 +<br />

r=2<br />

k−1<br />

+<br />

r=2<br />

ar<br />

<br />

ar ∂Gk(λ)<br />

0,<br />

Gr(λ) ∂λk<br />

∂<br />

∂λp<br />

Ck+1(λ) + b1<br />

Gk(λ)<br />

0, 2 p k. (78)<br />

Gr(λ)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!