20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

D. Bucur / Journal of Functional Analysis 236 (2006) 712–725 715<br />

(i) ∞|E(B) = 0 for every Borel set B ⊆ Ω with cap p (B ∩ E,Ω) = 0;<br />

(ii) ∞|E(B) =+∞for every Borel set B ⊆ Ω with cap p (B ∩ E,Ω) > 0.<br />

Definition 2.1. We say that a sequence (μn) of mea<strong>sur</strong>es in M p<br />

0 (Ω) γp-converges to a mea<strong>sur</strong>e<br />

μ ∈ M p<br />

1,p<br />

0 (Ω) if and only if Fμn : W0 (Ω) → R,<br />

Fμn (u) =<br />

Γ -converges in Lp (Ω) to Fμ, where<br />

<br />

Fμ(u) =<br />

<br />

Ω<br />

Ω<br />

|∇u| p <br />

dx +<br />

Ω<br />

|∇u| p <br />

dx +<br />

Ω<br />

|u| p dμn<br />

|u| p dμ.<br />

In or<strong>de</strong>r to simplify notations and since p is fixed, we drop the in<strong>de</strong>x p and instead of γp we<br />

note γ .<br />

We recall that Fn : W 1,p<br />

0 (Ω) → R Γ -converges to F in Lp (Ω) if for every u ∈ Lp (Ω) there<br />

exists a sequence un ∈ Lp (Ω) such that un → u in Lp (Ω) and<br />

Fμ(u) lim sup Fμn<br />

n→∞<br />

(un),<br />

and for every convergent sequence un → u in L p (Ω)<br />

Fμ(u) lim inf Fμn (un).<br />

n→∞<br />

In Definition 2.1, by the i<strong>de</strong>ntification of a quasi-open set A with the mea<strong>sur</strong>e ∞Ω\A, we<br />

implicitly have the <strong>de</strong>finition of the γ -convergence of a sequence of quasi-open sets. In general,<br />

the γ -limit of a sequence of quasi-open sets is a mea<strong>sur</strong>e of M p<br />

0 (Ω). In particu<strong>la</strong>r, this mea<strong>sur</strong>e<br />

can be itself of the form ∞Ω\A.<br />

Note that the γ -convergence is metrizab<strong>le</strong> by the following distance:<br />

<br />

dp(μ1,μ2) = |wμ1 − wμ2 | dx,<br />

where wμ is the variational solution of<br />

Ω<br />

−pwμ + μ|wμ| p−2 wμ = 1 (3)<br />

in W 1,p<br />

0 (Ω) ∩ Lp (Ω, μ) (see [5,15]). The precise sense of the equation is the following: wμ ∈<br />

W 1,p<br />

0 (Ω) ∩ Lp (Ω, μ) and for every φ ∈ W 1,p<br />

0 (Ω) ∩ Lp (Ω, μ)<br />

<br />

Ω<br />

|∇wμ| p−2 <br />

∇wμ∇φdx+<br />

Ω<br />

|wμ| p−2 <br />

wμφdμ=<br />

Ω<br />

φdx.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!