20.07.2013 Views

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

Estimation optimale du gradient du semi-groupe de la chaleur sur le ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

536 A. Olofsson / Journal of Functional Analysis 236 (2006) 517–545<br />

Theorem 4.1. Let T ∈ L(H) be an n-hypercontraction in the c<strong>la</strong>ss C0·. Then the function Wn,T<br />

acts as a contractive multiplier Wn,T : f ↦→ Wn,T f from the Hardy space A1(D∗ n,T ) into the<br />

Bergman space An(Dn,T ):<br />

Wn,T f 2 An f 2 ∗<br />

A1<br />

, f ∈ A1 Dn,T ;<br />

here the space D ∗ n,T is equipped with the norm ·n given by (3.3).<br />

Proof. Let f ∈ A1(D∗ n,T ) be a polynomial of the form (0.1) with coefficients ak ∈ D∗ n,T .We<br />

write the function Wn,T f as<br />

Wn,T f = <br />

S k nWn,T ak.<br />

k0<br />

Recall that by Theorem 3.3 the e<strong>le</strong>ments Wn,T ak all belong to the wan<strong>de</strong>ring subspace En,T .We<br />

rewrite the sum for Wn,T f as<br />

<br />

<br />

f = Wn,T a0 + Sn S k nWn,T <br />

ak+1 .<br />

Now, since the wan<strong>de</strong>ring subspace En,T for In,T is orthogonal to Sn(In,T ), we have that<br />

k0<br />

Wn,T f 2 An =Wn,T a0 2 An +<br />

<br />

<br />

<br />

=a0 2 n +<br />

<br />

<br />

<br />

Sn<br />

Sn<br />

<br />

k0<br />

<br />

k0<br />

S k n Wn,T ak+1<br />

S k n Wn,T ak+1<br />

where the <strong>la</strong>st equality follows by Theorem 3.3. The fact that the shift operator Sn on An(Dn,T )<br />

is a contraction now gives that<br />

Wn,T f 2 An a0 2 n +<br />

<br />

<br />

<br />

<br />

k0<br />

S k n Wn,T ak+1<br />

We can now iterate this <strong>la</strong>st inequality (4.1) to obtain that<br />

<br />

ak 2 n .<br />

Wn,T f 2 An<br />

k0<br />

<br />

2<br />

<br />

<br />

<br />

<br />

An<br />

2<br />

An<br />

,<br />

<br />

2<br />

An<br />

. (4.1)<br />

Since the space of D∗ n,T -valued polynomials is <strong>de</strong>nse in A1(D∗ n,T ), an approximation argument<br />

now yields the conclusion of the theorem. ✷<br />

Remark 4.1. We remark that the clo<strong>sur</strong>e in An(Dn,T ) of the range of the multiplier<br />

Wn,T : A1(D ∗ n,T ) → An(Dn,T ), that is, the clo<strong>sur</strong>e in An(Dn,T ) of the set of all functions of<br />

the form Wn,T g, where g ∈ A1(D∗ n,T ) is a D∗ n,T -valued polynomial, equals the shift invariant<br />

subspace [En,T ] generated by the wan<strong>de</strong>ring subspace En,T . In particu<strong>la</strong>r, the multiplier Wn,T<br />

maps A1(D ∗ n,T ) into In,T .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!