11.03.2014 Views

Segmentation of Stochastic Images using ... - Jacobs University

Segmentation of Stochastic Images using ... - Jacobs University

Segmentation of Stochastic Images using ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.2 Ambrosio-Tortorelli <strong>Segmentation</strong> with <strong>Stochastic</strong> Parameters<br />

8.2 Ambrosio-Tortorelli <strong>Segmentation</strong> with <strong>Stochastic</strong> Parameters<br />

Ambrosio-Tortorelli segmentation on stochastic images requires the solution <strong>of</strong> a system <strong>of</strong> two<br />

coupled SPDEs and involves four parameters the user has to choose:<br />

−∇ · (µ(φ(x,ξ<br />

) 2 + k ε )∇u(x,ξ ) ) + u(x,ξ ) = u 0 (x,ξ )<br />

( 1<br />

−ε∆φ(x,ξ ) +<br />

4ε + µ )<br />

2ν |∇u(x,ξ )|2 φ(x,ξ ) = 1<br />

4ε . (8.6)<br />

The parameter µ controls the influence <strong>of</strong> the phase field value on the image smoothing process and<br />

ε controls the width <strong>of</strong> the phase field. The influence <strong>of</strong> the image gradient on the phase field is<br />

controled by ν and k ε is an additional regularization parameter that ensures ellipticity <strong>of</strong> the first<br />

equation. By making all four parameters random variables, it is possible to investigate which parameter<br />

has the strongest influence on the segmentation result. The adoption <strong>of</strong> (8.6) is straightforward.<br />

We replace the classical parameters µ,ν,k ε and ε by their stochastic counterparts µ(ξ ),ν(ξ ),k ε (ξ )<br />

and ε(ξ ) and approximate these random variables in the polynomial chaos. We end up with<br />

−∇ · (µ(ξ<br />

)(φ(x,ξ ) 2 + k ε (ξ ))∇u(x,ξ ) ) + u(x,ξ ) = u 0 (x,ξ )<br />

( 1<br />

−∇ · (ε(ξ )∇φ(x,ξ )) +<br />

4ε(ξ ) + µ(ξ ) )<br />

2ν(ξ ) |∇u(x,ξ )|2 φ(x,ξ ) = 1<br />

4ε(ξ ) . (8.7)<br />

The discretization <strong>of</strong> this SPDE system is analog to the discretization <strong>of</strong> the SPDE system for stochastic<br />

images. The differences are that the coefficient <strong>of</strong> the Laplacian in the second equation is a<br />

stochastic quantity and that the right hand side <strong>of</strong> the second equation is a stochastic quantity, too.<br />

∫D 1<br />

4ε(ω)<br />

Thus, we integrate ∫ Ω dxdω to compute the right hand side by an integration rule, and we<br />

have to use an assembling method for the inhomogeneous stiffness matrix to discretize ∇ε(ω)∇φ.<br />

The discretization <strong>of</strong> (8.7) <strong>using</strong> finite elements for the deterministic dimensions and the polynomial<br />

chaos for the stochastic dimensions is<br />

N<br />

∑<br />

α=1<br />

(<br />

) M α,β + L α,β U α =<br />

N<br />

∑<br />

α=1<br />

M α,β (U 0 ) α ,<br />

N (<br />

∑<br />

α=1<br />

S α,β + T α,β ) Φ α =<br />

N<br />

∑<br />

α=1<br />

A α (8.8)<br />

for all β ∈ {1,...,N}, where M α,β ,L α,β ,S α,β and T α,β are blocks <strong>of</strong> the system matrix, defined as<br />

(M ) (Ψ ) ∫<br />

α,β = E α Ψ β P i P j dx<br />

i, j D<br />

( ) (<br />

S α,β = ∑∑E<br />

Ψ α Ψ β Ψ γ) ∫<br />

(˜ε) k (8.9)<br />

γ ∇P i · ∇P j P k dx ,<br />

i, j<br />

k γ<br />

and (<br />

(<br />

L α,β ) i, j = ∑<br />

k<br />

T α,β ) i, j = ∑<br />

k<br />

(<br />

∑E<br />

γ<br />

∑E<br />

γ<br />

Ψ α Ψ β Ψ γ) (˜φ 2 ) k γ<br />

(<br />

Ψ α Ψ β Ψ γ) u k γ<br />

D<br />

∫<br />

D<br />

∫<br />

D<br />

∇P i · ∇P j P k dx,<br />

P i P j P k dx .<br />

(8.10)<br />

Here, (˜φ 2 ) k γ and u k γ denote the coefficients <strong>of</strong> the polynomial chaos expansion <strong>of</strong> the Galerkin projection<br />

<strong>of</strong> µ(ξ )(φ(ξ ) 2 1<br />

+ k ε (ξ )) respectively<br />

4ε(ξ ) + µ(ξ )<br />

onto the image space (cf. [38]).<br />

2ν(ξ )|∇u(ξ )| 2<br />

Finally, the right hand side vector <strong>of</strong> the phase field equation is<br />

∫ ∫<br />

(A α 1<br />

) i =<br />

4ε P i(x)dxΨ α (ξ )dΠ . (8.11)<br />

Γ<br />

D<br />

We solve the SPDE system for the sensitivity analysis with the same methods as the SPDE system<br />

for stochastic images from Section 6.2, i.e. it is possible to use the GSD for the resolution process.<br />

101

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!