11.03.2014 Views

Segmentation of Stochastic Images using ... - Jacobs University

Segmentation of Stochastic Images using ... - Jacobs University

Segmentation of Stochastic Images using ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

List <strong>of</strong> Figures<br />

6.2 Mean and variance <strong>of</strong> the probabilities for pixels to belong to the object. Furthermore,<br />

we show in red Monte Carlo realizations <strong>of</strong> the object boundary sampled from<br />

the stochastic result. A high variance indicates pixels where the gray value uncertainty<br />

highly influences the result. For comparison we added a classical random<br />

walker segmentation result in the last column. There the variance image is not available,<br />

because the method acts on a classical image. . . . . . . . . . . . . . . . . . . 61<br />

6.3 MC-realizations <strong>of</strong> the stochastic object boundary for the stochastic liver image segmented<br />

with the stochastic random walker approach with β = 10. On the right we<br />

highlight a region <strong>of</strong> the image, where the noise in the input image influences the<br />

result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

6.4 PDF <strong>of</strong> the area <strong>of</strong> the segmented person from the street image for β = 25 (black)<br />

and β = 50 (gray). From the PDF we judge the reliability <strong>of</strong> the segmentation, a<br />

narrow PDF indicates that the image noise influences the segmentation marginally. . 63<br />

6.5 Comparison <strong>of</strong> the discretization methods for the computation <strong>of</strong> the stochastic random<br />

walker result to verify the intrusive discretization. The small difference between<br />

the intrusive discretization via the GSD method and the two other sampling based approaches<br />

might be due to the projection <strong>of</strong> the Laplacian matrix on the polynomial<br />

chaos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

6.6 Input “doughnut” without noise (left) and noisy input image treated as expected value<br />

<strong>of</strong> the stochastic image (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

6.7 Left: The object seed points (yellow) and background seed points (red) used as initialization<br />

<strong>of</strong> the stochastic random walker method. Right: The MC-realizations <strong>of</strong><br />

the stochastic segmentation result differ significantly for different noise realizations. 66<br />

6.8 The PDF for both possibilities <strong>of</strong> the volume computation, the summation <strong>of</strong> the<br />

random variables (gray) and the thresholding (black). The true volume is 60 pixels. . 66<br />

6.9 Structure <strong>of</strong> the block system <strong>of</strong> an SPDE. Every block has the sparsity structure<br />

<strong>of</strong> a classical finite element matrix and the block structure <strong>of</strong> the matrix is sparse,<br />

meaning that some <strong>of</strong> the blocks are zero. The sparsity structure on the block level<br />

depends on the number <strong>of</strong> random variables and the polynomial chaos degree used<br />

in the discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

6.10 Nonzero pattern <strong>of</strong> the SFEM matrix for the smoothed stochastic image <strong>using</strong> n = 5<br />

random variables and a polynomial degree p = 3. A black dot denotes a block that<br />

has a nonzero stochastic part, thus having the sparsity structure <strong>of</strong> a classical FEM<br />

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

6.11 Mean value <strong>of</strong> the three data sets used to demonstrate the stochastic Ambrosio-<br />

Tortorelli method. For the second data set, we denoted image regions the text refers<br />

to. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

6.12 PDF <strong>of</strong> a pixel from the phase field computed from the polynomial chaos expansion<br />

<strong>of</strong> the pixel via a sampling approach. Although we use uniform basic random<br />

variables for the polynomial chaos, the resulting random variables have skewed and<br />

Gaussian like distributions due to the use <strong>of</strong> higher order polynomials in the basic<br />

random variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

6.13 <strong>Segmentation</strong> result <strong>of</strong> the street scene. On the left we show the five samples the<br />

stochastic input image is computed from. On the right we compare the results computed<br />

via the GSD method and a Monte Carlo sampling. . . . . . . . . . . . . . . . 73<br />

6.14 Expected value and variance <strong>of</strong> the stochastic input image <strong>of</strong> the street scene. . . . . 73<br />

6.15 Mean and variance <strong>of</strong> the image and phase field for varying ε and µ <strong>using</strong> the US<br />

data. For comparison, we added the result from the deterministic method applied on<br />

the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!