16.11.2012 Views

Brain–Computer Interfaces - Index of

Brain–Computer Interfaces - Index of

Brain–Computer Interfaces - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

44 J.R. Wolpaw and C.B. Boulay<br />

72. NE. Crone, A. Sinai, and A. Korzeniewska, High-frequency gamma oscillations and human<br />

brain mapping with electrocorticography. Prog Brain Res, 159, 275–295, (2006).<br />

73. SP. Levine J.E. Huggins, S.L. BeMent, et al., Identification <strong>of</strong> electrocorticogram patterns as<br />

the basis for a direct brain interface. J Clin Neurophysiol, 16, 439–447, (1999).<br />

74. C. Mehring, MP. Nawrot, S.C. de Oliveira, et al., Comparing information about arm movement<br />

direction in single channels <strong>of</strong> local and epicortical field potentials from monkey and<br />

human motor cortex. J Physiol, Paris 98, 498–506, (2004).<br />

75. T. Satow, M. Matsuhashi, A. Ikeda, et al., Distinct cortical areas for motor preparation<br />

and execution in human identified by Bereitschaftspotential recording and ECoG-EMG<br />

coherence analysis. Clin Neurophysiol, 114, 1259–1264, (2003).<br />

76. G. Schalk, J. Kubanek, K.J. Miller, et al., Decoding two-dimensional movement trajectories<br />

using electrocorticographic signals in humans. J Neural Eng, 4, 264–275, (2007).<br />

77. G. Schalk, P. Brunner, L.A. Gerhardt, H. Bisch<strong>of</strong>, J.R. Wolpaw, Brain-computer interfaces<br />

(BCIs): Detection instead <strong>of</strong> classification. J Neurosci Methods, (2007).<br />

78. N.E. Crone, D.L. Miglioretti, B. Gordon, and R.P. Lesser, Functional mapping <strong>of</strong> human<br />

sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization<br />

in the gamma band. Brain, 121(Pt 12), 2301–2315, (1998).<br />

79. E.C. Leuthardt, K. Miller, N.R. Anderson, et al., Electrocorticographic frequency alteration<br />

mapping: a clinical technique for mapping the motor cortex. Neurosurgery, 60, 260–270;<br />

discussion 270–261, (2007).<br />

80. K.J. Miller, E.C. Leuthardt, G, Schalk, et al., Spectral changes in cortical surface potentials<br />

during motor movement. J Neurosci, 27, 2424–2432, (2007).<br />

81. S. Ohara, A. Ikeda, T. Kunieda, et al., Movement-related change <strong>of</strong> electrocorticographic<br />

activity in human supplementary motor area proper. Brain, 123(Pt 6), 1203–1215, (2000).<br />

82. G. Pfurtscheller, B. Graimann, J.E. Huggins, S.P. Levine, and L.A. Schuh, Spatiotemporal<br />

patterns <strong>of</strong> beta desynchronization and gamma synchronization in corticographic data during<br />

self-paced movement. Clin Neurophysiol, 114, 1226–1236, (2003).<br />

83. J. Kubanek, K.J. Miller, J.G. Ojemann, J.R. Wolpaw, and G. Schalk, Decoding flexion <strong>of</strong><br />

individual fingers using electrocorticographic signals in humans. J Neural Eng, 6(6), 66001,<br />

(2009).<br />

84. G. Schalk, N. Anderson, K. Wisneski, W. Kim, M.D. Smyth, J.R. Wolpaw, D.L. Barbour,<br />

and E.C. Leuthardt, Toward brain-computer interfacing using phonemes decoded from<br />

electrocorticography activity (ECoG) in humans. Program No. 414.11. 2007 Abstract<br />

Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC, (2007). Online.<br />

85. E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, and D.W. Moran, A brain-computer<br />

interface using electrocorticographic signals in humans. J Neural Eng 1, 63–71, (2004).<br />

86. G. Schalk, K.J. Miller, N.R. Anderson, et al., Two-dimensional movement control using<br />

electrocorticographic signals in humans. J Neural Eng, 5, 75–84, (2008).<br />

87. U. Mitzdorf, Current source-density method and application in cat cerebral cortex: investigation<br />

<strong>of</strong> evoked potentials and EEG phenomena. Physiol Rev, 65, 37–100, (1985).<br />

88. U. Mitzdorf, Properties <strong>of</strong> cortical generators <strong>of</strong> event-related potentials.<br />

Pharmacopsychiatry, 27, 49–51, (1994).<br />

89. K.J. Otto, M.D. Johnson, and D.R. Kipke, Voltage pulses change neural interface properties<br />

and improve unit recordings with chronically implanted microelectrodes. IEEE Trans<br />

Biomed Eng, 53, 333–340, (2006).<br />

90. O. Donchin, A. Gribova, O. Steinberg, H. Bergman, S. Cardoso de Oliveira, and E. Vaadia,<br />

Local field potentials related to bimanual movements in the primary and supplementary<br />

motor cortices. Exp Brain Res, 140, 46–55, (2001).<br />

91. J. Rickert, S.C. Oliveira, E. Vaadia, A. Aertsen, S. Rotter, and C. Mehring, Encoding <strong>of</strong><br />

movement direction in different frequency ranges <strong>of</strong> motor cortical local field potentials.<br />

J Neurosci, 25, 8815–8824, (2005).<br />

92. P.R. Kennedy, M.T. Kirby, M.M. Moore, B. King, and A. Mallory, Computer control using<br />

human intracortical local field potentials. IEEE Trans Neural Syst Rehabil Eng, 12, 339–344,<br />

(2004).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!