16.11.2012 Views

Brain–Computer Interfaces - Index of

Brain–Computer Interfaces - Index of

Brain–Computer Interfaces - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dynamics <strong>of</strong> Sensorimotor Oscillations in a Motor Task 63<br />

69. Z.J. Koles, M.S. Lazar, and S.Z. Zhou, Spatial patterns underlying population differences in<br />

the background EEG. Brain Topogr, 2, 275–284, (1990).<br />

70. J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, Designing optimal spatial filters for<br />

single-trial EEG classification in a movement task. Clin Neurophysiol, 110, 787–798, (1999).<br />

71. J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, Classification <strong>of</strong> movement-related<br />

EEG in a memorized delay task experiment. Clin Neurophysiol, 111, 1353–1365, (2000).<br />

72. G. Pfurtscheller, C. Neuper, H. Ramoser, et al., Visually guided motor imagery activates<br />

sensorimotor areas in humans. Neurosci Lett, 269, 153–156, (1999).<br />

73. E. Naito, P.E. Roland, and H.H. Ehrsson, I feel my hand moving: a new role <strong>of</strong> the primary<br />

motor cortex in somatic perception <strong>of</strong> limb movement, Neuron, 36, 979–988, (2002).<br />

74. J. Annett, Motor imagery: perception or action? Neuropsychologia, 33, 1395–1417, (1995).<br />

75. H.J. Gastaut and J. Bert, EEG changes during cinematographic presentation; moving picture<br />

activation <strong>of</strong> the EEG. Electroencephalogr Clin Neurophysiol, 6, 433–444, (1954).<br />

76. S. Cochin, C. Barthelemy, B. Lejeune, et al., Perception <strong>of</strong> motion and qEEG activity in human<br />

adults. Electroencephalogr Clin Neurophysiol, 107, 287–295, (1998).<br />

77. S.D. Muthukumaraswamy, B.W. Johnson, and N.A. McNair, Mu rhythm modulation during<br />

observation <strong>of</strong> an object-directed grasp. Cogn Brain Res, 19, 195–201, (2004).<br />

78. E.L. Altschuler, A. Vankov, E.M. Hubbard, et al., Mu wave blocking by observation <strong>of</strong> movement<br />

and its possible use as a tool to study theory <strong>of</strong> other minds. Soc Neurosci Abstr, 26, 68,<br />

(2000).<br />

79. G. Pfurtscheller, R.H. Grabner, C. Brunner, et al., Phasic heart rate changes during word<br />

translation <strong>of</strong> different difficulties. Psychophysiology, 44, 807–813, (2007).<br />

80. G. Pfurtscheller, R. Scherer, R. Leeb, et al., Viewing moving objects in Virtual Reality can<br />

change the dynamics <strong>of</strong> sensorimotor EEG rhythms. Presence-Teleop Virt Environ, 16, 111–<br />

118, (2007).<br />

81. J.A. Pineda, The functional significance <strong>of</strong> mu rhythms: translating seeing and hearing into<br />

doing. Brain Res, 50, 57–68, (2005).<br />

82. R. Hari, Action–perception connection and the cortical mu rhythm. Prog Brain Res, 159,<br />

253–260, (2006).<br />

83. V. Gallese, L. Fadiga, L. Fogassi, et al., Action recognition in the premotor cortex. Brain, 119,<br />

593–609, (1996).<br />

84. G. Rizzolatti, L. Fadiga, V. Gallese, et al., Premotor cortex and the recognition <strong>of</strong> motor<br />

actions. Cogn Brain Res, 3, 131–141, (1996).<br />

85. G. Rizzolatti, L. Fogassi, and V. Gallese, Neurophysiological mechanisms underlying the<br />

understanding and imitation <strong>of</strong> action. Nat Rev Neurosci, 2, 661–670, (2001).<br />

86. G. Buccino, F. Bink<strong>of</strong>ski, G.R. Fink, et al., Action observation activates premotor and parietal<br />

areas in a somatotopic manner: an fMRI study. Eur J Neurosci, 13, 400–404, (2001).<br />

87. J. Grézes and J. Decety, Functional anatomy <strong>of</strong> execution, mental simulation, observation, and<br />

verb generation <strong>of</strong> actions: a meta-analysis. Human Brain Mapp, 12, 1–19, (2001).<br />

88. N. Nishitani and R. Hari, Temporal dynamics <strong>of</strong> cortical representation for action, Proc Natl<br />

Acad Sci, 97, 913–918, (2000).<br />

89. J.M. Kilner and C.D. Frith, A possible role for primary motor cortex during action observation,<br />

Proc Natl Acad Sci, 104, 8683–8684, (2007).<br />

90. F.L. da Silva, Event-related neural activities: what about phase? Prog Brain Res, 159, 3–17,<br />

(2006).<br />

91. R. Hari, N. Forss, S. Avikainen, et al., Activation <strong>of</strong> human primary motor cortex during action<br />

observation: a neuromagnetic study. Proc Natl Acad Sci, 95, 15061–15065, (1998).<br />

92. J. Järveläinen, M. Schürmann, S. Avikainen, et al., Stronger reactivity <strong>of</strong> the human primary<br />

motor cortex during observation <strong>of</strong> live rather than video motor acts. Neuroreport, 12, 3493–<br />

3495, (2001).<br />

93. G.R. Müller-Putz, R. Scherer, G. Pfurtscheller, et al., Brain-computer interfaces for control<br />

<strong>of</strong> neuroprostheses: from synchronous to asynchronous mode <strong>of</strong> operation, Biomedizinische<br />

Technik, 51, 57–63, (2006).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!