16.11.2012 Views

Brain–Computer Interfaces - Index of

Brain–Computer Interfaces - Index of

Brain–Computer Interfaces - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Neur<strong>of</strong>eedback Training for BCI Control 77<br />

35. A. Abarbanel, The neural underpinnings <strong>of</strong> neur<strong>of</strong>eedback training. In J. Evans and A.<br />

Abarbanel (Eds.), Quantitative EEG and neur<strong>of</strong>eedback, Academic, pp. 311–340, (1999).<br />

36. N. Birbaumer, et al., The thought-translation device (TTD): neurobehavioral mechanisms and<br />

clinical outcome. IEEE Trans Neural Syst Rehabil Eng, 11, 120–123, (2003).<br />

37. G. Pfurtscheller and C. Neuper, Motor imagery and direct brain–computer communication.<br />

Proc IEEE, 89, 1123–1134, (2001).<br />

38. B. Blankertz, et al., Boosting bit rates and error detection for the classification <strong>of</strong> fast-paced<br />

motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehabi Eng,<br />

11, 127–131, (2003).<br />

39. M. Pregenzer, G. Pfurtscheller, and D. Flotzinger, Automated feature selection with a<br />

distinction sensitive learning vector quantizer. Neurocomputing, 11, 19–29, (1996).<br />

40. C. Neuper, A. Schlögl, and G. Pfurtscheller, Enhancement <strong>of</strong> left-right sensorimotor EEG<br />

differences during feedback-regulated motor imagery. J Clin Neurophysiol, 16, 373–382,<br />

(1999).<br />

41. G. Krausz, et al., Critical decision-speed and information transfer in the “Graz Brain-<br />

Computer Interface”. Appl Psychophysiol Bi<strong>of</strong>eedback, 28, 233–240, (2003).<br />

42. J.A. Pineda, et al., Learning to control brain rhythms: making a brain-computer interface<br />

possible. IEEE Trans Neural Syst Rehabil Eng, 11, 181–184, (2003).<br />

43. T. Hinterberger, et al., Auditory feedback <strong>of</strong> human EEG for direct brain-computer communication.<br />

Proceedings <strong>of</strong> ICAD 04-Tenth Meeting <strong>of</strong> the International Conference on Auditory<br />

Display, 6–9 July, (2004).<br />

44. M. Pham, et al., An auditory brain-computer interface based on the self-regulation <strong>of</strong> slow<br />

cortical potentials. Neurorehabil Neural Repair, 19, 206–218, (2005).<br />

45. T.M. Rutkowski, et al., Auditory feedback for brain computer interface management An EEG<br />

data sonification approach. In B. Gabrys, R.J. Howlett, and L.C. Jain (Eds.), Knowledgebased<br />

intelligent information and engineering systems, Lecture Notes in Computer Science,<br />

Springer, Berlin Heidelberg (2006).<br />

46. A. Chatterjee, et al., A brain-computer interface with vibrotactile bi<strong>of</strong>eedback for haptic<br />

information. J Neuroeng Rehabil, 2007. 4, (2007).<br />

47. M.A. Lebedev. and M.A.L. Nicolelis, Brain–machine interfaces: past, present and future.<br />

Trends Neurosci, 29, 536–546, (2006).<br />

48. F. Cincotti, et al., Vibrotactile feedback for brain-computer interface operation. Comput Intell<br />

Neurosci, 2007, 48937, (2007).<br />

49. A.Y. Kaplan, et al., Unconscious operant conditioning in the paradigm <strong>of</strong> brain-computer<br />

interface based on color perception. Int J Neurosci Lett, 115, 781–802, (2005).<br />

50. R. Leeb, et al., Walking by thinking: the brainwaves are crucial, not the muscles! Presence:<br />

Teleoper Virt Environ, 15, 500–514, (2006).<br />

51. G. Pfurtscheller, et al., Walking from thought. Brain Res, 1071, 145–152, (2006).<br />

52. R. Ron-Angevin, A. Diaz-Estrella, and A. Reyes-Lecuona, Development <strong>of</strong> a brain-computer<br />

interface based on virtual reality to improve training techniques. Cyberpsychol Behav, 8,<br />

353–354, (2005).<br />

53. R. Leeb, et al., Brain-computer communication: motivation, aim and impact <strong>of</strong> exploring a<br />

virtual apartment. IEEE Trans Neural Syst Rehabil Eng, 15, 473–482, (2007).<br />

54. G. Pfurtscheller, R. Leeb, and M. Slater, Cardiac responses induced during thought-based<br />

control <strong>of</strong> a virtual environment. Int J Psychophysiol, 62, 134–140, (2006).<br />

55. G. Pfurtscheller, et al., Viewing moving objects in virtual reality can change the dynamics <strong>of</strong><br />

sensorimotor EEG rhythms. Presence: Teleop Virt Environ, 16, 111–118, (2007).<br />

56. R. Hari, et al., Activation <strong>of</strong> human primary motor cortex during action observation: a<br />

neuromagnetic study. Proc Natl Acad Sci, 95, 15061–15065, (1998).<br />

57. S. Cochin, et al., Perception <strong>of</strong> motion and qEEG activity in human adults. Electroencephalogr<br />

Clin Neurophysiol, 107, 287–295, (1998).<br />

58. C. Babiloni, et al., Human cortical electroencephalography (EEG) rhythms during the observation<br />

<strong>of</strong> simple aimless movements: a high-resolution EEG study. Neuroimage, 17, 559–572,<br />

(2002).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!