18.12.2012 Views

2012 EDUCATIONAL BOOK - American Society of Clinical Oncology

2012 EDUCATIONAL BOOK - American Society of Clinical Oncology

2012 EDUCATIONAL BOOK - American Society of Clinical Oncology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FUTURE DIRECTIONS IN GBM THERAPY<br />

Challenges for the Evaluation and Efficacy <strong>of</strong><br />

Targeted Therapies in GBM<br />

As in other solid tumors, there are currently a large<br />

number <strong>of</strong> ongoing trials in GBM testing various targeted<br />

therapies and other approaches to overcoming resistance<br />

including those targeting DNA repair, receptor tyrosine<br />

kinases and other signaling pathways, and pathways involved<br />

in tumor stem-cell maintenance and regulation.<br />

Unfortunately, the use <strong>of</strong> targeted therapies in brain tumors<br />

and their evaluation in clinical trials face some additional<br />

challenges that are different than with solid tumors<br />

elsewhere in the body. First, many small molecule inhibitors<br />

have relatively poor penetration into the brain and<br />

cerebrospinal fluid, resulting in lower effective dose. Second,<br />

evaluating the biologic effects <strong>of</strong> a drug on its target in<br />

brain tumors is challenging because <strong>of</strong> its anatomic location<br />

and increased difficulty in doing repeat biopsies during or<br />

Author’s Disclosure <strong>of</strong> Potential Conflicts <strong>of</strong> Interest<br />

Author<br />

Employment or<br />

Leadership<br />

Positions<br />

Consultant or<br />

Advisory Role<br />

Howard Colman Castle<br />

Biosciences<br />

1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus<br />

concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med.<br />

2005;352:987-996.<br />

2. Stupp R, Hegi ME, Mason WP, et al. Effects <strong>of</strong> radiotherapy with<br />

concomitant and adjuvant temozolomide versus radiotherapy alone on survival<br />

in glioblastoma in a randomised phase III study: 5-year analysis <strong>of</strong> the<br />

EORTC-NCIC trial. Lancet. 2009;10:459-466.<br />

3. Gilbert MR, et al. M.P. RTOG 0525: A randomized phase III trial<br />

comparing standard adjuvant temozolomide (TMZ) with a dose-dense (dd)<br />

schedule in newly diagnosed glioblastoma (GBM). Neuro-<strong>Oncology</strong>. 2011;<br />

13:3s (suppl; abstr 46).<br />

4. de Wit MC, de Bruin HG, Eijkenboom W, et al. Immediate postradiotherapy<br />

changes in malignant glioma can mimic tumor progression.<br />

Neurology. 2004;63:535-537.<br />

5. Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse<br />

in the treatment <strong>of</strong> gliomas. Curr Opin Neurol Neurosurg. 2009;22:633-638.<br />

6. Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation<br />

status can predict the incidence and outcome <strong>of</strong> pseudoprogression after<br />

concomitant radiochemotherapy in newly diagnosed glioblastoma patients.<br />

J Clin Oncol. 2008;26:2192-2197.<br />

7. Brandsma D, Stalpers L, Taal W, et al. <strong>Clinical</strong> features, mechanisms, and<br />

management <strong>of</strong> pseudoprogression in malignant gliomas. Lancet. 2008;9:453-461.<br />

8. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment<br />

criteria for high-grade gliomas: response assessment in neuro-oncology<br />

working group. J Clin Oncol. 2010;28:1963-1972.<br />

9. Wong ET, Hess KR, Gleason MJ, et al. Outcomes and prognostic factors<br />

in recurrent glioma patients enrolled onto phase II clinical trials. J Clin<br />

Oncol. 1999;17:2572-2578.<br />

10. Lamborn KR, Yung WK, Chang SM, et al. Progression-free survival: an<br />

important end point in evaluating therapy for recurrent high-grade gliomas.<br />

Neuro-<strong>Oncology</strong>. 2008;10:162-170.<br />

11. Barker FG 2nd, Chang SM, Gutin PH, et al. Survival and functional<br />

status after resection <strong>of</strong> recurrent glioblastoma multiforme. Neurosurgery.<br />

1998;42:709-720.<br />

12. Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial <strong>of</strong><br />

safety and efficacy <strong>of</strong> intraoperative controlled delivery by biodegradable<br />

polymers <strong>of</strong> chemotherapy for recurrent gliomas. The Polymer-brain Tumor<br />

Treatment Group. Lancet. 1995;345:1008-1012.<br />

13. Perry JR, Bélanger K, Mason WP, et al. Phase II trial <strong>of</strong> continuous<br />

dose-intense temozolomide in recurrent malignant glioma: RESCUE study.<br />

J Clin Oncol. 2010;28:2051-2057.<br />

14. Wick W, Puduvalli VK, Chamberlain MC, et al. Phase III study <strong>of</strong><br />

after treatment compared to some other systemic cancers.<br />

Nonetheless, if experience from other solid tumors is any<br />

indication, future successful clinical trials in recurrent<br />

GBM will likely need to have a larger emphasis on pharmacodynamics<br />

and biologic tissue effects as important endpoints.<br />

In summary, the dramatic increase in our understanding<br />

<strong>of</strong> the molecular underpinnings and subtypes <strong>of</strong> glioblastoma,<br />

along with increases in the number and type <strong>of</strong><br />

available small molecule inhibitors, indicates that improvement<br />

in patient outcome in GBM with appropriate targeted<br />

therapy is indeed feasible. However, the success and rapidity<br />

<strong>of</strong> these developments will hinge on successful integration<br />

<strong>of</strong> molecular and preclinical data with the more efficient<br />

and innovative clinical trial designs in order to identify<br />

those key pathways and drugs that will have the highest<br />

benefit for particular GBM subtypes.<br />

Stock<br />

Ownership Honoraria<br />

REFERENCES<br />

Research<br />

Funding<br />

Expert<br />

Testimony<br />

Other<br />

Remuneration<br />

enzastaurin compared with lomustine in the treatment <strong>of</strong> recurrent intracranial<br />

glioblastoma. J Clin Oncol. 2010;28:1168-1174.<br />

15. Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in<br />

combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;<br />

27:4733-4740.<br />

16. Kreisl TN, Kim L, Moore K, et al. Phase II trial <strong>of</strong> single-agent<br />

bevacizumab followed by bevacizumab plus irinotecan at tumor progression<br />

in recurrent glioblastoma. J Clin Oncol. 2009;27:740-745.<br />

17. Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for highgrade<br />

glioma. Nat Rev Neurol. 2009;5:610-620.<br />

18. Reardon DA, Turner S, Peters KB, et al. A review <strong>of</strong> VEGF/VEGFRtargeted<br />

therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw.<br />

2011;9:414-427.<br />

19. Batchelor T, Mulholland P, Nyns B, et al. The efficacy <strong>of</strong> cediranib as<br />

monotherapy and in combination with lomustine compared to lomustine alone<br />

in patients with recurrent glioblastoma: A phase III randomized study. Neuro<br />

Oncol. 2010;12(suppl 4).<br />

20. Iwamoto FM, Abrey LE, Beal K, et al. Patterns <strong>of</strong> relapse and prognosis<br />

after bevacizumab failure in recurrent glioblastoma. Neurology. 2009;73:1200-1206.<br />

21. Quant EC, Norden AD, Drappatz J, et al. Role <strong>of</strong> a second chemotherapy<br />

in recurrent malignant glioma patients who progress on bevacizumab. Neuro<br />

Oncol. 2009;11:550-555.<br />

22. Reardon DA, Vredenburgh JJ, Desjardins A, et al. Bevacizumab (BV)<br />

continuation following BV progression: Meta-analysis <strong>of</strong> five consecutive recurrent<br />

glioblastoma (GBM) trials. J Clin Oncol. 2011;29:45s(suppl; abstr 2030).<br />

23. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077-3080.<br />

24. Colman H, Aldape K. Molecular predictors in glioblastoma: toward<br />

personalized therapy. Arch Neurol. 2008;65:877-883.<br />

25. Colman H, Zhang L, Sulman EP, et al. A multigene predictor <strong>of</strong><br />

outcome in glioblastoma. Neuro-<strong>Oncology</strong>. 2010;12:49-57.<br />

26. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses <strong>of</strong><br />

high-grade glioma predict prognosis, delineate a pattern <strong>of</strong> disease progression,<br />

and resemble stages in neurogenesis. Cancer Cell. 2006;9:157-173.<br />

27. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis<br />

identifies clinically relevant subtypes <strong>of</strong> glioblastoma characterized by abnormalities<br />

in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98-110.<br />

28. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit<br />

from temozolomide in glioblastoma. N Engl J Med. 2005;352:997-1003.<br />

29. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas.<br />

N Engl J Med. 2009;360:765-773.<br />

30. Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification <strong>of</strong> a CpG<br />

island methylator phenotype that defines a distinct subgroup <strong>of</strong> glioma.<br />

Cancer Cell. 2010;17:510-522.<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!