14.02.2013 Views

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4. Neurocomput<strong>in</strong>g 64:223-234, 2005 99<br />

p<br />

Mutual <strong>in</strong>formation of recovered sources<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

1<br />

2<br />

0.6<br />

0.4<br />

3<br />

5<br />

4<br />

0.4 0.6<br />

0.4 0.6<br />

0.2 0.4 0.6 0.8 1<br />

q<br />

0<br />

0.8<br />

0.6<br />

0.4<br />

0.6<br />

0.2<br />

0.4<br />

p × g−1 q ) ◦ (f0.5 × g0.5) ◦ A � �<br />

S<br />

5<br />

4<br />

3<br />

2<br />

1<br />

�<br />

− log<br />

0<br />

MI � A −1 ◦ (f −1<br />

2<br />

1<br />

0<br />

0<br />

1<br />

1<br />

gq<br />

2 3<br />

0.5<br />

fp<br />

p = 0.1<br />

p = 1.0<br />

q = 0.1<br />

q = 1.0<br />

0<br />

0 1 2 3<br />

Fig. 2. Simulation of the separability result us<strong>in</strong>g two families of nonl<strong>in</strong>earities with<br />

fp(x) = 1<br />

10p log<br />

� √<br />

x+ x2 +4e−20p 2e−10p �<br />

and gq = y y<br />

4 | 4 |3q−0.5 . The left plot displays a color<br />

plot together with overlayed contours of a separation measure depend<strong>in</strong>g on the<br />

parameters p, q used for recovery. The separation quality is measured us<strong>in</strong>g the<br />

negative logarithm of the mutual <strong>in</strong>formation of the recovered sources. The region<br />

around the separation po<strong>in</strong>t p = q = 0.5 is also displayed <strong>in</strong> more detail.<br />

The components of the postnonl<strong>in</strong>earity will be taken from two families of<br />

functions described by<br />

fp(x) = 1<br />

10p log<br />

� √<br />

x + x2 + 4e−20p �<br />

2e −10p<br />

and gq(y) = y<br />

4<br />

� �<br />

�y<br />

�3q−0.5<br />

� �<br />

� �<br />

4<br />

with p, q vary<strong>in</strong>g between 0 and 1. The first component of the nonl<strong>in</strong>earity,<br />

fp models a sensors which saturates with vary<strong>in</strong>g strength and the second<br />

component gq describes a polynomial activation of the sensor with vary<strong>in</strong>g<br />

degree, see figure 2, right hand side.<br />

In the simulation, an <strong>in</strong>dependent uniformly distributed random vector (3000<br />

samples <strong>in</strong> [−1, 1] 2 ) is mixed postnonl<strong>in</strong>early by the matrix A = ( 2.6 1.4<br />

0.7 3.3 ) and<br />

the diagonal nonl<strong>in</strong>earity<br />

⎛<br />

⎜<br />

f ⎝ x<br />

⎞ ⎛<br />

1<br />

⎟ ⎜ 5<br />

⎠ = ⎝<br />

y<br />

log� e5 2<br />

x + 1<br />

2<br />

√ �⎞<br />

e10x2 + 4<br />

1 y |y| 16<br />

⎟<br />

⎠ =<br />

⎛<br />

⎜<br />

⎝ f0.5(x)<br />

⎞<br />

⎟<br />

⎠<br />

g0.5(y)<br />

To recover the sources the family (fp, gq) −1 of diagonal nonl<strong>in</strong>earities is used<br />

together with the <strong>in</strong>verse of A.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!