14.02.2013 Views

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 7. Proc. ISCAS 2005, pages 5878-5881 127<br />

50<br />

0<br />

−50<br />

−120<br />

−50<br />

−50<br />

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500<br />

120<br />

50<br />

0<br />

−100<br />

0 100 200 300 400 500<br />

(a) ECG record<strong>in</strong>gs<br />

50<br />

0<br />

80<br />

0<br />

0<br />

0<br />

0<br />

−50<br />

0 100 200 300 400<br />

−20<br />

500 0 100 200 300 400<br />

−50<br />

500 0 100 200 300 400<br />

−50<br />

500 0 100 200 300 400 500<br />

20<br />

0<br />

−20<br />

−100<br />

−100<br />

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500<br />

(b) extracted sources<br />

50<br />

0<br />

120<br />

50<br />

0<br />

(c) MECG part<br />

50<br />

0<br />

120<br />

50<br />

0<br />

(d) FECG part<br />

Fig. 4. Fetal ECG example. (a) shows the ECG record<strong>in</strong>gs. The underly<strong>in</strong>g FECG (4 heartbeats) is partially visible <strong>in</strong> the dom<strong>in</strong>at<strong>in</strong>g MECG (3 heartbeats).<br />

Figure (b) gives the extracted sources us<strong>in</strong>g MHICA with k =2and 500 Hessians. In (c) and (d) the projections of the mother sources (components 1 and<br />

2 <strong>in</strong> (b)) respectively the fetal sources (component 3) onto the mixture space (a) are plotted.<br />

Our goal is to extract an MECG and an FECG component;<br />

however it cannot be expected to f<strong>in</strong>d an only one-dimensional<br />

MECG due to the fact that projections of a three-dimensional<br />

vector (electric) field are measured. Hence modell<strong>in</strong>g the data<br />

by a multidimensional BSS problem with k =2(but allow<strong>in</strong>g<br />

for an additional one-dimensional component) makes sense.<br />

Application of MHICA (with 500 Hessians) and MSOBI<br />

(with 50 autocorrelation matrices) extracts a two-dimensional<br />

MECG component and a one-dimensional FECG component.<br />

After block-permutation we get the follow<strong>in</strong>g estimated mix<strong>in</strong>g<br />

matrices (A us<strong>in</strong>g MHICA and A ′ us<strong>in</strong>g MSOBI)<br />

� �<br />

0.37 0.42 −0.81<br />

A = −0.75 0.89 −0.16 A<br />

0.55 −0.16 0.57<br />

′ � �<br />

0.22 0.91 −0.40<br />

= −0.84 0.23 −0.33 .<br />

0.50 0.34 0.85<br />

The thus estimated sources us<strong>in</strong>g MHICA are plotted <strong>in</strong><br />

figure 4(b). In order to compare the two mix<strong>in</strong>g matrices,<br />

calculation of<br />

�<br />

.<br />

A −1 A ′ �<br />

0.85 1.02 0.64<br />

= −0.23 1.11 0.35<br />

−0.01 −0.08 0.98<br />

yields a somewhat visible block structure; the performance<br />

<strong>in</strong>dex is E (2) (A−1A ′ ) = 1.12. The block structure is not<br />

very dom<strong>in</strong>ant, which <strong>in</strong>dicates that the two models — block<br />

<strong>in</strong>dependence versus time-block-decorrelation — are not fully<br />

equivalent.<br />

A (scal<strong>in</strong>g <strong>in</strong>variant) decomposition of the observed ECG<br />

data can be achieved by compos<strong>in</strong>g the extracted sources us<strong>in</strong>g<br />

only the relevant mix<strong>in</strong>g columns. For example for the MECG<br />

part this means apply<strong>in</strong>g the projection ΠM := (a1, a2, 0)A−1 to the observations. This yields the projection matrices<br />

�<br />

�<br />

0.52 0.38 0.84<br />

ΠM = −0.10 1.08 0.17<br />

0.34 −0.27 0.41<br />

ΠF =<br />

� 0.48 −0.38 −0.84<br />

0.10 −0.08 −0.17<br />

−0.34 0.27 0.59<br />

onto the mother respectively the fetal ECG us<strong>in</strong>g MHICA and<br />

Π ′ � �<br />

0.78 0.21 0.45<br />

M = −0.18 1.17 0.36 Π<br />

0.47 −0.44 0.05<br />

′ � �<br />

0.22 −0.21 −0.45<br />

F = 0.18 −0.17 −0.36 .<br />

−0.47 0.44 0.95<br />

us<strong>in</strong>g MSOBI. The results of the first algorithm are plotted <strong>in</strong><br />

figures 4 (c) and (d). The fetal ECG is most active at sensor<br />

1 (as visual <strong>in</strong>spection of the observation confirms). When<br />

compar<strong>in</strong>g the projection matrices with the results from [1], we<br />

get quite high similarity of the ICA-based results, and a modest<br />

difference with the projections of the time-based algorithm.<br />

Other one-dimensional ICA-based results on this data set are<br />

reported for example <strong>in</strong> [14].<br />

�<br />

VI. CONCLUSION<br />

We have shown how the idea of jo<strong>in</strong>t block diagonalization<br />

as extension of jo<strong>in</strong>t diagonalization helps us to generalize<br />

ICA and time-structure based algorithms such as HICA and<br />

SOBI to the multidimensional ICA case. The thus def<strong>in</strong>ed<br />

algorithms are able to robustly decompose signals <strong>in</strong>to groups<br />

of <strong>in</strong>dependent signals. In future work, besides more extensive<br />

experiments and tests with noise and outliers, we want to<br />

extend this result to a version of JADE us<strong>in</strong>g moments <strong>in</strong>stead<br />

of cumulants, which preserve the block structure.<br />

REFERENCES<br />

[1] J. Cardoso, “Multidimensional <strong>in</strong>dependent component analysis,” <strong>in</strong><br />

Proc. of ICASSP ’98, Seattle, 1998.<br />

[2] A. Hyvär<strong>in</strong>en and P. Hoyer, “Emergence of phase and shift <strong>in</strong>variant<br />

features by decomposition of natural images <strong>in</strong>to <strong>in</strong>dependent feature<br />

subspaces,” Neural Computation, vol. 12, no. 7, pp. 1705–1720, 2000.<br />

[3] J.-F. Cardoso and A. Souloumiac, “Bl<strong>in</strong>d beamform<strong>in</strong>g for non gaussian<br />

signals,” IEE Proceed<strong>in</strong>gs - F, vol. 140, no. 6, pp. 362–370, 1993.<br />

[4] A. Belouchrani, K. A. Meraim, J.-F. Cardoso, and E. Moul<strong>in</strong>es, “A<br />

bl<strong>in</strong>d source separation technique based on second order statistics,” IEEE<br />

Transactions on Signal Process<strong>in</strong>g, vol. 45, no. 2, pp. 434–444, 1997.<br />

[5] K. Abed-Meraim and A. Belouchrani, “Algorithms for jo<strong>in</strong>t block<br />

diagonalization,” <strong>in</strong> Proc. EUSIPCO 2004, Vienna, Austria, 2004, pp.<br />

209–212.<br />

[6] J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous<br />

diagonalization,” SIAM J. Mat. Anal. Appl., vol. 17, no. 1, pp. 161–<br />

164, Jan. 1995.<br />

[7] F. Theis, “Uniqueness of complex and multidimensional <strong>in</strong>dependent<br />

component analysis,” Signal Process<strong>in</strong>g, vol. 84, no. 5, pp. 951–956,<br />

2004.<br />

[8] ——, “A new concept for separability problems <strong>in</strong> bl<strong>in</strong>d source separation,”<br />

Neural Computation, vol. 16, pp. 1827–1850, 2004.<br />

[9] J. L<strong>in</strong>, “Factoriz<strong>in</strong>g multivariate function classes,” <strong>in</strong> Advances <strong>in</strong> Neural<br />

Information Process<strong>in</strong>g Systems, vol. 10, 1998, pp. 563–569.<br />

[10] A. Yeredor, “Bl<strong>in</strong>d source separation via the second characteristic<br />

function,” Signal Process<strong>in</strong>g, vol. 80, no. 5, pp. 897–902, 2000.<br />

[11] C. Févotte and C. Doncarli, “A unified presentation of bl<strong>in</strong>d separation<br />

methods for convolutive mixtures us<strong>in</strong>g block-diagonalization,” <strong>in</strong> Proc.<br />

ICA 2003, Nara, Japan, 2003, pp. 349–354.<br />

[12] S. Amari, A. Cichocki, and H. Yang, “A new learn<strong>in</strong>g algorithm for bl<strong>in</strong>d<br />

signal separation,” Advances <strong>in</strong> Neural Information Process<strong>in</strong>g Systems,<br />

vol. 8, pp. 757–763, 1996.<br />

[13] B. D. M. (ed.), “DaISy: database for the identification<br />

of systems,” Department of Electrical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

ESAT/SISTA, K.U.Leuven, Belgium, Oct 2004. [Onl<strong>in</strong>e]. Available:<br />

http://www.esat.kuleuven.ac.be/sista/daisy/<br />

[14] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “Fetal electrocardiogram<br />

extraction by source subspace separation,” <strong>in</strong> Proc. IEEE SP /<br />

ATHOS Workshop on HOS, Girona, Spa<strong>in</strong>, 1995, pp. 134–138.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!