14.02.2013 Views

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 15. Neurocomput<strong>in</strong>g, 69:1485-1501, 2006 207<br />

3.1.4 Parameter estimation<br />

We still have to f<strong>in</strong>d optimal values for the global parameters M and K.<br />

Their selection aga<strong>in</strong> can be based on a MDL criterion for the detected noise<br />

e := x − xe. Accord<strong>in</strong>gly we apply the LICA algorithm for different M and<br />

K and embed each of these error signals e(M, K) <strong>in</strong> delayed coord<strong>in</strong>ates of a<br />

fixed large enough dimension ˆ M and choose the parameters M0 and K0 such<br />

that the MDL criterion estimat<strong>in</strong>g the nois<strong>in</strong>ess of the error signal is m<strong>in</strong>imal.<br />

The MDL criterion is evaluated with respect to the eigenvalues λj(M, K) of<br />

the correlation matrix of e(M, K) such that<br />

(M0, K0) = argm<strong>in</strong> MDL<br />

M,K<br />

� M, ˆ L, 0, (λj(M, K)), γ �<br />

3.2 Denois<strong>in</strong>g us<strong>in</strong>g Delayed AMUSE<br />

Signals with an <strong>in</strong>herent correlation structure like time series data can as well<br />

be analyzed us<strong>in</strong>g second-order bl<strong>in</strong>d source separation techniques only [22,34].<br />

GEVD of a matrix pencil [36,37] or a jo<strong>in</strong>t approximative diagonalization of a<br />

set of correlation matrices [1] is then usually considered. Recently we proposed<br />

an algorithm based on a generalized eigenvalue decomposition <strong>in</strong> a feature<br />

space of delayed coord<strong>in</strong>ates [34]. It provides means for BSS and denois<strong>in</strong>g<br />

simultaneously.<br />

3.2.1 Embedd<strong>in</strong>g<br />

Assum<strong>in</strong>g that each sensor signal is a l<strong>in</strong>ear comb<strong>in</strong>ation X = AS of N<br />

underly<strong>in</strong>g but unknown source signals si, a source signal trajectory matrix<br />

S can be written <strong>in</strong> analogy to equation 1 and equation 2. Then the mix<strong>in</strong>g<br />

matrix A is a block matrix with a diagonal matrix <strong>in</strong> each block:<br />

⎡<br />

a11IM×M a12IM×M ⎢<br />

· · · a1NIM×M ⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎢ a21IM×M a22IM×M · · · · · · ⎥<br />

A = ⎢<br />

⎥<br />

⎢<br />

. ⎥<br />

⎢ . . .. . ⎥<br />

⎣<br />

⎦<br />

aN1IM×M aN2IM×M · · · aNNIM×M<br />

⎤<br />

(9)<br />

(10)<br />

The matrix IM×M represents the identity matrix, and <strong>in</strong> accord with an <strong>in</strong>stantaneous<br />

mix<strong>in</strong>g model the mix<strong>in</strong>g coefficient aij relates the sensor signal<br />

xi with the source signal sj.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!