14.02.2013 Views

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

Mathematics in Independent Component Analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

282 Chapter 20. Signal Process<strong>in</strong>g 86(3):603-623, 2006<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

(a) A JADE<br />

1 2 3 4 5 6 7 8<br />

(d) A sNMF<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

channel<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

(b) A NMF<br />

signal<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

1<br />

2<br />

3<br />

(e) A sNMF*<br />

1<br />

2<br />

3<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

(c) A NMF*<br />

(f) A SCA<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

1<br />

2<br />

3<br />

Fig. 10. Mix<strong>in</strong>g matrices recovered for the real s-EMG us<strong>in</strong>g different methods; (a)<br />

JADE, (b, c) NMF with different preprocess<strong>in</strong>g, (d, e) sparse NMF with the same<br />

two preprocess<strong>in</strong>g methods as NMF, and (f) SCA.<br />

3.2 Real s-EMG signals<br />

In this section we analyze real s-EMG record<strong>in</strong>gs obta<strong>in</strong>ed from ten healthy<br />

subjects. At first we will aga<strong>in</strong> study a s<strong>in</strong>gle s-EMG and plot it for visual<br />

<strong>in</strong>spection, and then show statistics over multiple subjects. The first data set<br />

has been obta<strong>in</strong>ed from a s<strong>in</strong>gle subject perform<strong>in</strong>g a susta<strong>in</strong>ed contraction at<br />

30% MVC, see Fig. 9. The signal acquisition and preprocess<strong>in</strong>g is described<br />

<strong>in</strong> section 2.1.2.<br />

We <strong>in</strong>itially use JADE as ICA algorithm of choice. The estimated mix<strong>in</strong>g<br />

matrix is visualized <strong>in</strong> Fig. 10(a). As <strong>in</strong> the case of synthetic signals, we then<br />

apply NMF and sparse NMF to both X+ and X∗ and obta<strong>in</strong> the recovered<br />

mix<strong>in</strong>g matrices visualized <strong>in</strong> Fig. 10(b-e).<br />

We face the follow<strong>in</strong>g problem when recover<strong>in</strong>g the source signals by SCA.<br />

If we use PCA to n = 3 dimensions, we cannot achieve convergence; also a<br />

generalized Hough plot [37] does not reveal such structure. Hence we choose<br />

dimension reduction to n = 2. In the two-dimensional projected mixtures, the<br />

data clearly clusters along two l<strong>in</strong>es, so the assumption of sparseness holds<br />

<strong>in</strong> 2 dimensions. We use Mangasarian-style cluster<strong>in</strong>g / SCA (similar to kmeans)<br />

[38] to recover these directions. The thus recovered mix<strong>in</strong>g matrix <strong>in</strong><br />

21<br />

1 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!