26.12.2013 Aufrufe

Doktorarbeit_Mairoser.pdf - OPUS - Universität Augsburg

Doktorarbeit_Mairoser.pdf - OPUS - Universität Augsburg

Doktorarbeit_Mairoser.pdf - OPUS - Universität Augsburg

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

A. Ergänzungen zur Dünnfilmtechnologie<br />

ew articles | insight<br />

NAture mAterIAls doi: 10.1038/nmat2380<br />

0<br />

–1<br />

Stuttgart<br />

(1.2 MV)<br />

Dietrich<br />

(200 kV)<br />

Aberration-corrected<br />

electron microscope<br />

TEAM/<br />

CREST<br />

NION<br />

Haider<br />

(200 kV)<br />

10 0<br />

10 1<br />

Source<br />

2<br />

3<br />

4<br />

Light<br />

microscope<br />

Electron microscope<br />

Zach, Haider<br />

(1 kV SEM)<br />

Borries and Ruska<br />

Marton, Ardenne<br />

(100 kV)<br />

Amici<br />

Abbe<br />

Ruska (75 kV)<br />

10 2<br />

10 3<br />

10 4<br />

Feature size (Å)<br />

Lenses<br />

5<br />

800<br />

Ross<br />

1850 1900<br />

1950 2000 2050<br />

Year<br />

Sample<br />

ardware advances in imaging microscopies. Optical<br />

y reached its far-field diffraction limit roughly a century ago.<br />

icroscopy, exploiting the reduction in electron wavelength with<br />

beam voltage, showed steady increases in resolving power for<br />

ars, until limited by radiation damage. Recent developments<br />

g electron-optical aberrations have led to improvements in<br />

ower without having to increase the electron beam energy.<br />

till far from their ultimate diffraction limits, corrected electron<br />

es have already demonstrated the ability to resolve submage<br />

features. (Adapted from ref. 114; © 2009 Elsevier.)<br />

ADF<br />

detector<br />

projections increases roughly as the square of the resoluen<br />

improvements in resolution by a factor of two or three<br />

ke a dramatic difference. Even when such small distances<br />

ed to be measured, a smaller probe size allows for higher<br />

mages and improved detectability of single dopant atoms,<br />

studies of a wider range of dopant species and thicker,<br />

istic, substrates.<br />

rticle will explore the limits and opportunities for the<br />

ration of aberration-corrected microscopes. After a brief<br />

n of the STEM itself, the improvements in resolution and<br />

ue to aberration-corrected optics and improved electron<br />

re detailed. Improved energy resolution from monors<br />

and higher-resolution spectrometers has enabled nanosurements<br />

of the photonic properties of materials and<br />

es. Finally, with the improvements in instrumentation, it<br />

ple itself and the radiation dose it can tolerate that seems<br />

the limit to signal and resolution.<br />

ning transmission electron microscope<br />

TEM to include the necessary field-emission source and<br />

um needed to keep samples clean during irradiation was<br />

by Crewe in 1964 (ref. 35), and within a few years they<br />

onstrating images of single heavy atoms 15 and their difoss<br />

thin carbon films 36 . The popular dark-field and high-<br />

-field imaging modes were demonstrated early during the<br />

development, including in the collection of lattice images<br />

oparticles 37 . As the original microscopes were intended for<br />

research, these samples were used more as resolution tests<br />

materials studies — with one exception being the study<br />

t particles 19 . Adoption of the STEM technique was slow<br />

difficulties in sample preparation 190of<br />

bulk materials and a<br />

despread instrument availability as a result of the vacuum<br />

onics requirements.<br />

Electron<br />

spectrometer<br />

© 2009 Macmillan Publishers Limited. All rights reserved<br />

Figure 3 | major elements of a scanning transmission electron<br />

microscope. A high-brightness electron source produces a 100–300- keV<br />

electron beam with an energy spread of 0.3–1 eV, which can be narrowed<br />

to below 100 meV with a monochromator. Round magnetic lenses and<br />

corrective multipole optics focus the beam to a spot size of between<br />

0.05 and ~0.3 nm, which is scanned across an electron-transparent sample.<br />

To a first approximation, when the beam is placed on an atom column,<br />

strong Rutherford-like scattering deflects the transmitted electrons to form<br />

brighter features in an annular dark-field (ADF) image, with less scattering<br />

between the columns. Inelastic scattering is strongly peaked in the forward<br />

direction and is collected simultaneously with the ADF signal. The energy<br />

losses of the transmitted electrons reflect characteristic excitations of<br />

the sample in a frequency range spanning the near-infrared to hard X-ray<br />

regions, allowing electronic and elemental identification from a single<br />

column of atoms.<br />

Abbildung A.2.: Schematische Darstellung der Funktionsweise eines Rastertransmissionselektronenmikroskops.<br />

Von einer Elektronenquelle wird ein kohärenter<br />

Elektronenstrahl emittiert, der durch verschiedene Elektronenlinsen auf<br />

einen Strahldurchmesser von bis zu 0,5 Å fokussiert wird. Während der<br />

Transmission durch die dünne Probe (< 100 nm) wechselwirken die Elektronen<br />

daran. Die elastisch gestreuten Elektronen werden vom ADF-Detektor<br />

registriert, die inelastisch gestreuten werden über ein Elektronenspektrometer<br />

nach ihrer Energie charakterisiert [248]. (Grafik aus [248].)<br />

Almost a decade later, with the development of a commercially<br />

manufactured STEM and better specimen preparation tools such as<br />

ion-milling, there was a renewed interest in the instrument as an<br />

analytical tool for metallurgy and in the semiconductor industry.<br />

Some of these second-generation instruments are still in operation<br />

today. In the mid-1990s, a new generation of commercial fieldemission<br />

TEMs with scanning attachments made STEM techniques<br />

widely available to the materials research community and industry.<br />

The major components of a STEM are shown in Fig. 3. A<br />

field-emission gun provides a high-coherence source of electrons<br />

that is accelerated to between 100 and 300 keV — energies sufficient<br />

to penetrate samples up to 100 nm thick without significant beam<br />

spreading. A series of electron lenses and corrective optics placed<br />

before the sample focuses the beam down to a diameter smaller<br />

nature materials | VOL 8 | APRIL 2009 | www.nature.com/naturematerials<br />

264 11/3/09 11:12:08

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!