30.10.2014 Views

Third Day Poster Session, 17 June 2010 - NanoTR-VI

Third Day Poster Session, 17 June 2010 - NanoTR-VI

Third Day Poster Session, 17 June 2010 - NanoTR-VI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Poster</strong> <strong>Session</strong>, Thursday, <strong>June</strong> <strong>17</strong><br />

Theme F686 - N1123<br />

PEG assisted synthesis of Mn 3 O 4 Nanoparticles: Structural and Magnetic Study<br />

A.Baykal 1 *, M.Toma 1 , Z.Durmus 1 , H.Kavas 2 and M.S.Toprak 3<br />

1 Department of Chemistry and 2 Physics, Fatih University, B. Cekmece, 34500 Istanbul, Turkey<br />

3 Functional Materials Division, Royal Institute of Technology - KTH, SE16440 Stockholm, Sweden<br />

Abstract- In this work, Mn 3 O 4 nanoparticles have been successfully synthesized by polyethylene glycol (PEG)-assisted<br />

hydrothermal route for the first time. X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), transmission<br />

electron microscopy (TEM) and vibrating scanning magnetometry (VSM), electron spin resonance (ESR) were used for the<br />

structural, morphological and magnetic investigation of the products, respectively.<br />

Among magnetic materials, manganese oxide<br />

(Mn 3 O 4 ) as a magnetic transition metal oxide is an<br />

important material. Nanometer-sized manganese oxide<br />

(Mn 3 O 4 ), with notable increased surface area and greatly<br />

reduced size, is expected to display better performance in<br />

these aspects of application [1]. In this study the crystallite<br />

size from X-ray diffraction pattern and particle size from<br />

transmisson electron micrographs were calculated as 23±1<br />

nm and 24.5±1.5 nm respectively. Transmisson electron<br />

microscopy (TEM) analysis also showed the<br />

polycrystalline nature of the product. Magnetic<br />

characteristics of Mn 3 O 4 NP were evaluated by electron<br />

spin resonance (ESR) measurements in the temperature<br />

range of 24 °K – 294 °K and the Curie temperature was<br />

observed as 43 K. Also the magnetic phases occured in<br />

nano sized Mn 3 O 4 are detected below Tc by this method.<br />

The room temperature paramagnetic characteristic are<br />

verified by vibrating scanning magnetometry (VSM).<br />

1st Derivatives of EPR Absorbtion Peaks<br />

0 1000 2000 3000 4000 5000 6000 7000<br />

Applied Magnetic Field (Oe)<br />

294 K<br />

266 K<br />

230 K<br />

202 K<br />

<strong>17</strong>5 K<br />

153 K<br />

122 K<br />

104 K<br />

74 K<br />

50 K<br />

Figure 2. First derivatives of EPR absorption peaks vs applied<br />

magnetic field at various temperatures above 50 °K.<br />

Intensity (a.u)<br />

..............................................112<br />

exp<br />

fit<br />

D= 23 nm<br />

= 1 nm<br />

.......................................................................200<br />

................103<br />

211<br />

....................................................004<br />

...........................................................220<br />

20 30 40 50 60<br />

2(Degree)<br />

.....................................................................204<br />

......................................................015<br />

..................................................................312<br />

........................................................................303<br />

.......................................................321<br />

................................................................224<br />

........................................................................116<br />

...........................................................400<br />

Figure 1. XRD pattern and line profile fitting of Mn 3 O 4 NP’s via<br />

PEG assisted hydrothermal route.<br />

ESR analysis showed antiferromagnetic interacting<br />

spins at >50 °K and ferromagnetic interacting alignment <<br />

50 °K revealing a Tc of 43 °K in Figure 2 and 3.<br />

1st Derivatives of EPR Absorbtion Peaks<br />

50 K<br />

49 K<br />

47 K<br />

45 K<br />

44 K<br />

42 K<br />

39 K<br />

37 K<br />

36 K<br />

34 K<br />

32 K<br />

31 K<br />

28 K<br />

27 K<br />

24 K<br />

0 1000 2000 3000 4000 5000 6000 7000<br />

Applied Magnetic Field (Oe)<br />

Figure 3. First derivatives of EPR absorption peaks vs applied<br />

magnetic field at various temperatures below 50 °K.<br />

* Corresponding author: hbaykal@fatih.edu.tr<br />

[1] H. Kavas, Z. Durmus, M. enel, S. Kazan, A. Baykal, M.S.<br />

Toprak, Polyhedron doi:10.1016/j.poly.2009.12.034.<br />

6th Nanoscience and Nanotechnology Conference, zmir, <strong>2010</strong> 716

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!