09.01.2015 Views

Photonic crystals in biology

Photonic crystals in biology

Photonic crystals in biology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Poster Session, Tuesday, June 15<br />

Theme A1 - B702<br />

Stabiliz<strong>in</strong>g Liquid Crystal Mesophases for Rigid Mesostructured Metal Sulfides/Selenides<br />

Yurdanur Türker 1 *, Halil I. Okur 1 , Nazli Böke 1 , Ö 1<br />

Department of Chemistry, Bilkent University, Ankara 06800, Turkey<br />

1<br />

Abstract- LC templat<strong>in</strong>g (LCT) can be used to synthesize meostructured/mesoporous metals, metal oxides, and II-VI semiconductors. By<br />

us<strong>in</strong>g LCT approach, we have <strong>in</strong>vestigated, to the best of our knowledge, the first mesostructured metal sulfide th<strong>in</strong> films, at 11 Cd(II)/P85<br />

mole ratio upon expos<strong>in</strong>g the LC mesostructure to H 2S (g) reaction. However, s<strong>in</strong>ce the metal ion content is still low, phase separation occurs<br />

over the films <strong>in</strong> time and also, at high metal ion contents, formed HNO 3 become problematic. However, stable mesostructured MS/Se can be<br />

-<br />

synthesized upon addition of TiO 2 polymeriz<strong>in</strong>g agent to LC system s<strong>in</strong>ce it can rigidify the mesostructure and allow ag<strong>in</strong>g to remove NO 3<br />

ions before H 2 S/Se (g) reactions. In order to perform calc<strong>in</strong>ation process to remove surfactants, the LC mesophases are be<strong>in</strong>g rigidified further<br />

by <strong>in</strong>creas<strong>in</strong>g metal ion content by use of charged surfactants.<br />

The mesoporous materials were discovered <strong>in</strong> the early 90s<br />

us<strong>in</strong>g surfactant templat<strong>in</strong>g approach [1]. This approach has<br />

been used to synthesize many mesostructured metal oxides<br />

[2], metals [3] and II-VI semiconductors [4]. In 2001, Dag et<br />

al. have discovered a new form of LC mesophase of<br />

transition metal aqua complexes (TMS), [M(H 2 O) 4 ](NO 3 ) 2 ,<br />

and non-ionic surfactants or Pluronics at high metal salt<br />

concentrations [5]. The coord<strong>in</strong>ated water molecules of the<br />

TMS mediate the formation of the LC mesophase through<br />

hydrogen bond<strong>in</strong>g (M-OH 2 ---(OCH 2 CH 2 ) x -R) with ethylene<br />

oxide units of the surfactant molecules [4b,5-8]. Controll<strong>in</strong>g<br />

the quantity and the type of counter ion allows one to control<br />

the structure of salt-surfactant LC mesophases [7]. LC<br />

templat<strong>in</strong>g (LCT) can be used to synthesize<br />

meostructured/mesoporous metals, metal oxides, and II-VI<br />

semiconductors.<br />

By us<strong>in</strong>g the LCT approach, we have synthesized<br />

mesostructured Metal Sulfides (MS) at high salt<br />

concentrations by mix<strong>in</strong>g Pluronics with TMS <strong>in</strong> a dilute<br />

media. We have <strong>in</strong>vestigated that the reaction between the<br />

th<strong>in</strong> films of TMS – P85 (EO26PO 40 EO 26 ) LC mesophase<br />

with a relatively high metal salt content, 11.0 mole ratio of<br />

Cd(II)/P85, and H 2 S (g) at room temperature enables us to<br />

synthesize, to the best of our knowledge, the first<br />

mesostructured metal sulfide th<strong>in</strong> films.[9] However, s<strong>in</strong>ce<br />

the metal ion content of TMS-Pluronic mesophase is still low<br />

to fully mimic the LLCM dur<strong>in</strong>g the H 2 S/Se reaction to form<br />

the stable mesostructured MS/Se film samples, the <strong>in</strong>evitable<br />

result is the slow phase separation of the film samples <strong>in</strong> time<br />

due to release of the excess surfactant molecules out of the<br />

mesostructured films as shown <strong>in</strong> Figure A.<br />

In order to synthesize stable mesoporous MS/Se film<br />

samples, it is required to <strong>in</strong>crease the metal ion content of the<br />

Pluronic/TMS b<strong>in</strong>ary LC system so that it can fully mimic<br />

the LLCM dur<strong>in</strong>g calc<strong>in</strong>ation processes and H2S/H 2 Se (g)<br />

reactions. Besides, at such high metal ion content, high<br />

amount of nitrate ions form HNO 3 dur<strong>in</strong>g H 2 S/H 2 Se (g)<br />

reactions which causes decomposition of MS/Se back to their<br />

nitrates. Therefore, the LC mesophase must be rigidified<br />

enough to resist further calc<strong>in</strong>ations at high temperatures<br />

before H 2 S/Se (g) reactions. TiO 2 and SiO 2 are the proper<br />

templates s<strong>in</strong>ce they can form rigid walls upon controll<strong>in</strong>g<br />

their polymerization.<br />

Recently, we have shown by EISA approach, we could<br />

obta<strong>in</strong> rigid well-ordered mesostructured Cd(II)-TiO 2 films<br />

until 13 Cd(II)/P123 mo le ratio at 60 TiO 2 /P123 mo le ratio.<br />

Here, by the help of TiO 2 also, 90% of nitrate ions could be<br />

removed by ag<strong>in</strong>g at relatively low temperatures, at which<br />

mesostructure could still reta<strong>in</strong>, before H 2 S/Se (g) reactions.<br />

Under those conditions, the stable CdS and CdSe<br />

nanoparticles can be synthesized <strong>in</strong> the channels of<br />

mesostructured titania films <strong>in</strong> one-pot and no phase<br />

separation occurs s<strong>in</strong>ce the mesostructure is rigid enough as<br />

shown <strong>in</strong> Figure B [10]. However, <strong>in</strong> order to calc<strong>in</strong>e at high<br />

temperatures to remove the surfactant, the mesostructure is<br />

required to be rigidified more.<br />

Figure 1. A) Phase seperation occurs at mesostructured CdS/P85<br />

th<strong>in</strong> film <strong>in</strong> time. B) No phase seperation occurs at mesostructured<br />

CdS/TiO 2 /P123 th<strong>in</strong> film.<br />

The role of the charged surfactants <strong>in</strong> order to <strong>in</strong>crease the<br />

metal salt contents <strong>in</strong> LC systems has been recently<br />

<strong>in</strong>vestigated [11]. By us<strong>in</strong>g charged surfactants <strong>in</strong> Cd(II)-<br />

TiO 2-P123 system, CTAB (Cetyltrimethylammonium<br />

Bro mide (C 16 H 33 N(CH 3 ) 3 Br)), Cd(II)/P123 mole ratio could<br />

be <strong>in</strong>creased to 20 at 60 TiO 2 /P123. This high metal ion<br />

content films are go<strong>in</strong>g to be calc<strong>in</strong>ed at 350 ºC and then,<br />

exposed to H 2 S/H 2 Se (g) reactions to synthesize MS/Se films.<br />

They are go<strong>in</strong>g to be characterized to clarify if the films are<br />

rigid enough to perform calc<strong>in</strong>ation process.<br />

<br />

107T837, UNAM-Regpot (203953) and TÜBA for the<br />

f<strong>in</strong>ancial support.<br />

*Correspond<strong>in</strong>g author: yurdanur@fen.bilkent.edu.tr<br />

[1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J.<br />

S. Beck, Nature 359, 710 (1992).<br />

[2] O. Dag, I. Soten, O. Celik, S. Polarz, N. Coombs and G. A.Oz<strong>in</strong>,<br />

Adv. Func. Mater. 13, 30 (2003).<br />

[3] a) G. S. Attard, P.N. Barlett, N.R.B. Coleman, J.M. Elliott,<br />

J.R.Owen and J.H.Wong, Science 278, 838 (1997). b) Y. Yamauchi,<br />

T. Momma, T. Yokoshima, K. Kuroda and T. Osaka, J. Mater.<br />

Chem. 15, 1987 (2005).<br />

[4] a) P.U. Braun, P. Osenar and S.I. Stupp, Nature 380, 325 (1996).<br />

b) O. Dag, S. Alayoglu, C. Tura and O. Celik, Chem. Mater. 15,<br />

2711 (2003).<br />

[5] O. Celik and O. Dag, Angew. Chem. Int. Ed. 40, 3800 (2001).<br />

[6] A.F. Demirors, B.E. Eser and O. Dag, Langmuir 17, 4157<br />

(2005).<br />

[7] C. Albayrak, G. Gulten and O. Dag, Langmuir 19, 876 (2007).<br />

[8] O. Dag, S. Alayoglu and I. Uysal, J. Phys. Chem. B. 108, 8439<br />

(2004).<br />

[9] Turker, Y.; Dag, Ö. J. Mater. Chem. 2008, 18, 3467.<br />

[10] Okur, H. I.; Turker, Y.; Dag, Ö. Langmuir 2010, 26, 538.<br />

[11] Albayrak, C.; Soylu, A. M.; Dag, Ö. Langmuir 2008, 24,<br />

10592.<br />

6th Nanoscience and Nanotechnology Conference, zmir, 2010 314

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!