09.01.2015 Views

Photonic crystals in biology

Photonic crystals in biology

Photonic crystals in biology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Poster Session, Tuesday, June 15<br />

Theme A1 - B702<br />

Density profiles and <strong>in</strong>ertia moments of <strong>in</strong>teract<strong>in</strong>g bosons <strong>in</strong> anisotropic harmonic<br />

conf<strong>in</strong>ement<br />

A I. Mese 1 , P Capuzzi 2 , S. Aktas 1 , Z Akdeniz 3 and S E Okan 1<br />

1 Department of Physics, Trakya University, 22030 Edirne, Turkey<br />

2 Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas and Departamento de F´ısica,FCEyN,<br />

Universidad de Buenos Aires, Buenos Aires, RA-1428, Argent<strong>in</strong>a<br />

3 Physics Department, Piri Reis University, 34940 Tuzla, Istanbul, Turkey<br />

Abstract— We <strong>in</strong>vestigate the structural properties of a system, consist<strong>in</strong>g of N strongly<br />

coupled charged bosonic atoms (Rubidium), mov<strong>in</strong>g <strong>in</strong> two dimensions, and <strong>in</strong>teract<strong>in</strong>g through a<br />

repulsive K 0 (r) potential [1] <strong>in</strong>side anisotropic two-dimensional harmonic traps, with N <strong>in</strong> the range<br />

from 4 to 9. Increas<strong>in</strong>g the anisotropy of the conf<strong>in</strong>ement potential can drive the system from a twodimensional<br />

(2D) to a one-dimensional (1D) configuration. After that, we calculated <strong>in</strong>ertia moment<br />

depend<strong>in</strong>g on the anisotropy parameters and particle numbers.<br />

Interest <strong>in</strong> a two-dimensional (2D) fluid of charged<br />

bosons was greatly stimulated by the work of Nelson and<br />

Seung [1], who showed that a fluid of flux l<strong>in</strong>es <strong>in</strong> strongly<br />

type-II superconduct<strong>in</strong>g materials can be mapped onto this<br />

model system <strong>in</strong> statistical mechanics. The <strong>in</strong>teraction<br />

potential law is given by V ( r)<br />

V0K<br />

0(<br />

r / r0<br />

) , with V0<br />

a coupl<strong>in</strong>g-strength parameter and K 0 x the modified<br />

Bessel function behav<strong>in</strong>g as lnx at short distances.<br />

Follow<strong>in</strong>g an early variational Monte Carlo study [2], the<br />

transition between an Abrikosov lattice and a<br />

homogeneous liquid of vortices was studied with<strong>in</strong> this<br />

mapp<strong>in</strong>g by means of the dislocation mechanism of<br />

melt<strong>in</strong>g [3] and the density functional theory of freez<strong>in</strong>g<br />

[4]. A first-order transition from an Abrikosov lattice to a<br />

bosonic superfluid of entangled vortices has also been<br />

demonstrated by the path-<strong>in</strong>tegral Monte Carlo method<br />

[5]. A triangular Abrikosov lattice is, of course, equivalent<br />

to the Wigner lattice for a 2D Coulomb system.<br />

In this work we use this very simple theoretical<br />

method to evaluate the structure of small crystallites of<br />

vortex l<strong>in</strong>es with<strong>in</strong> the Nelson–Seung mapp<strong>in</strong>g, by means<br />

of self-consistent variational calculations on the<br />

anisotropic harmonic trapped bosons with repulsive<br />

<strong>in</strong>teractions us<strong>in</strong>g a Gaussian wavefunction approximation<br />

[6]. We <strong>in</strong>vestigate the density profiles of the ground state<br />

configurations and compare with recent experiment [7]<br />

and published numerical results [8]. In figure 1, we<br />

calculate <strong>in</strong>ertia moment as a function of coupl<strong>in</strong>g constant<br />

for N=4, 5, 6 and 9 particles.<br />

I x<br />

/ I y<br />

I x /I y<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

= 1.0<br />

= 0.9<br />

= 0.8<br />

= 0.7<br />

= 0.6<br />

= 0.5<br />

= 0.4<br />

= 0.3<br />

= 0.2<br />

= 0.1<br />

0<br />

0 1 2 3 4 5 6<br />

V0<br />

/ w<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

= 1.0<br />

= 0.9<br />

= 0.8<br />

= 0.7<br />

= 0.6<br />

= 0.5<br />

= 0.4<br />

= 0.3<br />

= 0.2<br />

= 0.1<br />

0 1 2 3 4 5 6<br />

V0<br />

/ w<br />

a) b)<br />

I x /I y<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

= 1.0<br />

= 0.9<br />

= 0.8<br />

= 0.7<br />

= 0.6<br />

= 0.5<br />

= 0.4<br />

= 0.3<br />

= 0.2<br />

= 0.1<br />

0 1 2 3 4 5 6<br />

V0<br />

/ w<br />

c) d)<br />

I x / I y<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

= 1.0<br />

= 0.9<br />

= 0.8<br />

= 0.7<br />

= 0.6<br />

= 0.5<br />

= 0.4<br />

= 0.3<br />

= 0.2<br />

= 0.1<br />

0 1 2 3 4 5 6<br />

Figure 1 We showed the ratio of <strong>in</strong>ertia moments as a function of<br />

coupl<strong>in</strong>g parameter for different anisotropy values.<br />

Correspond<strong>in</strong>g author: aihsanmese@yahoo.com<br />

[1] Nelson D R and Seung H S, Phys. Rev. B, 39 9153, 1989<br />

[2] X<strong>in</strong>g L and Tesanovic Z 1990 Phys. Rev. Lett. 65 794<br />

[3] Ma H-R and Chui S T 1991 Phys. Rev. Lett. 67 505<br />

[4] Sengupta S, Dasgupta C, Krishnamurthy H R, Menon G I and<br />

Ramakrishnan T V 1991 Phys. Rev. Lett. 67 3444<br />

[5] Nordborg H and Blatter G 1997 Phys. Rev. Lett. 79 1925<br />

[6] A. I. Mese et al., J. Phys.: Condens. Matter 20 , 335222, 2008<br />

[7] M Sa<strong>in</strong>t Jean and C Guthmann, J. Phys.: Condens. Matter 14<br />

(2002) 13653–13660<br />

[8] S. W. S. Apol<strong>in</strong>ario, B. Partoens, and F. M. Peeters, Physical<br />

Review E 72, 046122 2005<br />

V0<br />

/ w<br />

6th Nanoscience and Nanotechnology Conference, zmir, 2010 262

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!