09.01.2015 Views

Photonic crystals in biology

Photonic crystals in biology

Photonic crystals in biology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Poster Session, Tuesday, June 15<br />

Theme A1 - B702<br />

Electron rich surfactant capped CdS nanoparticles for hybrid solar cells<br />

Mahmut Kus 1 *, Alessandra Operamolla 2 , Serhad Tilki 1 ,Esma Yenel 3 3 , Omar Hassan Omar 4 , Francesco<br />

Babudri 2 , Gian luca M. Far<strong>in</strong>o la 2<br />

1 Selçuk University, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g and Architecture, Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Konya, Turkey<br />

2 Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, I-70126 Bari, Italy<br />

3 Selçuk University, Department of Chemistry, Konya Turkey<br />

4 CNR-ICCOM, Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, I-70126 Bari, Italy<br />

Abstract-We prepared some oligoarylenes bear<strong>in</strong>g thiolic groups as novel semiconduct<strong>in</strong>g surfactants for CdS nanoparticles. Two phase<br />

synthetic route was used for synthesis of CdS nanoparticles. New surfactants were capped dur<strong>in</strong>g synthesis or after synthesis by ligand<br />

exchange. The new nanohybrid structures were characterized by TEM, XRD, optical absorbance and fluorescence emission.<br />

Colloidal nano<strong>crystals</strong> (NCs) have been attract<strong>in</strong>g much<br />

<strong>in</strong>terest thanks to their excellent and tunable optical<br />

properties and perspectives of application <strong>in</strong> fields such as<br />

optoelectronic, photocatalysis and biological label<strong>in</strong>g [1-<br />

5]. Semiconductor quantum dots (QDs) can be fabricated<br />

via several techniques [6-9]. Oil soluble surfactants such<br />

as trioctylphosph<strong>in</strong>e oxide (TOPO) and oleic acid (OA) are<br />

usually adopted <strong>in</strong> the synthesis for NPs solubilization.<br />

TOPO or OA capped quantum dots can f<strong>in</strong>d <strong>in</strong>terest<strong>in</strong>g<br />

application <strong>in</strong> polymer-hybrid light emitt<strong>in</strong>g diodes<br />

(PLEDs). In such devices these electron-<strong>in</strong>active surfactant<br />

are generally preferred to prevent the quench<strong>in</strong>g of light<br />

emitted by the QDs. However, <strong>in</strong> solar cells this approach<br />

is not convenient, because QDs are supposed to take part<br />

<strong>in</strong> electron transfer processes. and surfactants such as<br />

TOPO and OA usually behave as <strong>in</strong>sulators caus<strong>in</strong>g the<br />

drop of the current.<br />

In this study, we prepared some oligoarylenes bear<strong>in</strong>g<br />

thiolic groups as novel semiconduct<strong>in</strong>g surfactants for CdS<br />

nanoparticles. We previously reported the synthetic<br />

procedure to the new compounds [10]. The molecular<br />

structures of oligoarylenes are given <strong>in</strong> figure 1.<br />

R<br />

I R=H<br />

II R=alkyl cha<strong>in</strong><br />

Figure 1. Molecular structures of oligoarylenes<br />

S<br />

Two phase method was used to synthesize CdS<br />

nanoparticles. New surfactants were capped dur<strong>in</strong>g<br />

synthesis or after synthesis by ligand exchange. The new<br />

nanohybrid structures were characterized by TEM, XRD,<br />

optical absorbance and fluorescence emission.<br />

Figure 2a shows scheme of oligoarylene capped CdS<br />

nanoparticles. It is well known, thiol groups can easily<br />

anchor to nanoparticles surface. Optical absorption spectra<br />

(b) shows crystal growth of CdS by reaction time.<br />

SH<br />

SH<br />

Abs<br />

1.5<br />

1<br />

0.5<br />

a<br />

0<br />

250 400 600<br />

800<br />

Wavelength [nm]<br />

b<br />

Figure 2. Scheme of oligoarylene capped CdS nanoparticles (a)<br />

and optical absorption of CdS nanoparticles synthesized <strong>in</strong><br />

different reaction time.<br />

*Correspond<strong>in</strong>g author: mahmut_kus@yahoo.com<br />

[1] Klabunde, K. J. Nanoscale Materials <strong>in</strong> Chemistry; Wiley-<br />

Interscience: New York, 2001.<br />

[2] Fendler, J. H. Nanoparticles and Nanostructured Films;<br />

Wiley-VCH: We<strong>in</strong>heim, Germany, 1998.<br />

[3] Weller, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 41.<br />

[4] Rogach, A. L.; Talap<strong>in</strong>, D. V.; Shevchenko, E. V.;<br />

Kornowski, A.; Haase, M.; Weller, H. AdV. Funct. Mater. 2002,<br />

12, 653.<br />

[5] Alivisatos, A. P. Science 1996, 271, 933.<br />

[6] D. Bimberg, M. Grundmann, N.N. Ledentsov, M.H. Mao, Ch.<br />

Ribbat, R. Sell<strong>in</strong>, V.M. Ust<strong>in</strong>ov, A.E. Zhukov, Zh.I. Alferov, J.A.<br />

Lottet al, Phys. Status Solidi B 224 (2001) 787.<br />

[7] A. Agostiano, M. Catalano, M.L. Curri, L. Chiavarone, M.<br />

Della Monica, P.M. Lugara`, L. Manna, V. Spagnolo, J. Phys.<br />

Chem. B 104 (2000) 8391.<br />

[8] C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc.<br />

115 (1993) 8706.<br />

[9] Daocheng Pan, Qiang Wang, Shichun Jiang, Xiangl<strong>in</strong>g Ji,<br />

and Lijia An, J. Phys. Chem. C 2007, 111, 5661-5666<br />

[10] A. Operamolla, O. Hassan Omar, F. Babudri, G. Far<strong>in</strong>ola,<br />

F. Naso, J. Org. Chem. 2007, 72, 10272-10275.<br />

6th Nanoscience and Nanotechnology Conference, zmir, 2010 241

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!