09.01.2015 Views

Photonic crystals in biology

Photonic crystals in biology

Photonic crystals in biology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Poster Session, Tuesday, June 15<br />

Theme A1 - B702<br />

The Synthesis and characterizat ion of Z<strong>in</strong>c Oxide (ZnO) <strong>in</strong> difficult crystall<strong>in</strong>e structure<br />

Alisah Cagatay C 1 , Sule Erten-Ela 1 *, Siddik Icli 1 ,<br />

1 Solar Energy Institute, Ege University, Bornova, 35100 Izmir, Turkey<br />

Abstract-ZnO nanopowder has been successfully synthesized by a microwave-assisted solution approach and a solution phase reaction. An<br />

efficient microwave method and simple solution reaction method are presented to synthesize ZnO nanostructures. We <strong>in</strong>vestigated the effects of<br />

surfactant, growth temperature, anneal<strong>in</strong>g to control the morphologies of ZnO nanostructures.<br />

One-dimensional (1D) nanostructures such as nanowires,<br />

nanobelts, and nanorods, whose lateral dimensions fall <strong>in</strong><br />

the range of 1–100 nm, have attracted a lot of <strong>in</strong>terest and<br />

have been extensively researched <strong>in</strong> recent years because of<br />

their peculiar and <strong>in</strong>terest<strong>in</strong>g physical properties and<br />

potential device applications [1–3]. Among these important<br />

materials, z<strong>in</strong>c oxide (ZnO) has been given considerable<br />

<strong>in</strong>terest because of its attractive optical functions based on the<br />

large b<strong>in</strong>d<strong>in</strong>g energy of excitons and biexcitons (60 and 15<br />

meV, respectively) as well as its multifunctional physical<br />

properties. Notable applications of 1D ZnO nanostructures<br />

<strong>in</strong>clude the fabrication of nanometer scale electronic<br />

devices such as light-emitt<strong>in</strong>g diodes [4], nanolasers [5,6],<br />

gas sensors [7,8], field-effect transistors [9], and dyesensitized<br />

solar cells [10].<br />

Semiconductor-assisted photocatalysis has attracted<br />

considerable attention among advanced oxidation process<br />

(AOP) as a promis<strong>in</strong>g tool for implement<strong>in</strong>g the large-scale<br />

purification of waste waters at low cost. This methodology<br />

exploits the strong reactivity of hydroxyl radicals <strong>in</strong> driv<strong>in</strong>g<br />

oxidation processes, ultimately lead<strong>in</strong>g to the extensive<br />

m<strong>in</strong>eralization of a variety of environmental<br />

contam<strong>in</strong>ants[11,12]. ZnO is the one of the most suitable<br />

material for photocatalytic degradation <strong>in</strong> the presence of<br />

sunlight. [13,14].<br />

In this work, we report the synthesis, structural<br />

characterization of ZnO nanostructures us<strong>in</strong>g a microwave<br />

method and solution phase method to prepare different<br />

morphologies of nanostructures by adjust<strong>in</strong>g the amount of<br />

NaOH, growth temperature, surfactant, anneal<strong>in</strong>g. Structural<br />

characterization of nanostructures were done by scann<strong>in</strong>g<br />

electron microscopy (SEM).<br />

We acknowledge f<strong>in</strong>ancial support from Scientific and<br />

Technological Research Council of Turkey, TUBITAK.<br />

*Correspond<strong>in</strong>g author: sule.erten@ege.edu.tr<br />

[1] C.B. Murray, C.R. Kagan, M.G. Bawendi, Science 270 (1995)<br />

1335.<br />

[2] J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32 (1999) 435.<br />

[3] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947.<br />

[4] R. K¨onenkamp, R.C.Word, C. Schlegel, Appl. Phys. Lett. 85<br />

(2004) 6004.<br />

[5] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. K<strong>in</strong>d, E.<br />

Weber, R.<br />

Russo, P. Yang, Science 292 (2001) 1897.<br />

[6] J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W.<br />

Kim,<br />

Adv. Mater. 15 (2003) 1911.<br />

[7] Q.H. Li, Y.X. Liang, Q.Wan, T.H.Wang, Appl. Phys. Lett. 85<br />

(2004) 6389.<br />

[8] X. Wang, J. Zhang, Z. Zhu, Appl. Surf. Sci. 252 (2006) 2404.<br />

[9] S. Ju, K. Lee, D.B. Janes, M.-H. Yoon, A. Facchetti, T.J. Marks,<br />

Nano Lett. 5 (2005) 2281.<br />

[10] M. Law, L. Greene, J.C. Johnson, R. Saykally, P.Yang, Nat.<br />

Mater. 4 (2005) 455.<br />

[11] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Catal. Today 53<br />

(1999)<br />

51.<br />

[12] J.M. Hermann, Catal. Today 53 (1999) 115.<br />

[13] F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen, C.C.<br />

Chen, Sep. Purif. Technol.<br />

62 (2008) 423.<br />

[14] A.H. Akyol, C. Yatmaz, M. Bayramoblu, Appl. Catal. B:<br />

Environ. 54 (2004) 19.<br />

Figure 1. SEM images of ZnO nanorods<br />

By us<strong>in</strong>g microwave method and solution phase method,<br />

ZnO nanostructures with different morphologies were<br />

successfully synthesized. Effects of the reaction conditions on<br />

the morphological characterization were discussed.<br />

6th Nanoscience and Nanotechnology Conference, zmir, 2010 275

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!