09.01.2015 Views

Photonic crystals in biology

Photonic crystals in biology

Photonic crystals in biology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Poster Session, Tuesday, June 15<br />

Theme A1 - B702<br />

Amyloid-like peptidic template-directed synthesis of <strong>in</strong>organic nanomaterials<br />

Ruslan Garifull<strong>in</strong>, Mustafa Özgür Güler*<br />

UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey<br />

Abstract— We have designed amyloid like peptides self-assembl<strong>in</strong>g <strong>in</strong>to nano-sized fibrilar structures. These assemblies are<br />

further exploited as a universal nano-template for synthesis of <strong>in</strong>organic materials through the m<strong>in</strong>eralization process. Our<br />

method of us<strong>in</strong>g m<strong>in</strong>eralization process to produce <strong>in</strong>organic nanostructures is unique as it realizes “bottom-up” molecular<br />

design concept.<br />

Self-assembly is an important technique for materials design<br />

us<strong>in</strong>g non-covalent <strong>in</strong>teractions <strong>in</strong>clud<strong>in</strong>g hydrogen bond<strong>in</strong>g,<br />

hydrophobic, electrostatic, metal-ligand, - and van der<br />

Waals <strong>in</strong>teractions. 1 Nanostructures <strong>in</strong>spired from biological<br />

systems have been <strong>in</strong>vestigated for use <strong>in</strong> electronics 5-7 ,<br />

optics 8 and regenerative medic<strong>in</strong>e 9 , among other<br />

HO<br />

O<br />

O<br />

NH<br />

O<br />

functional group<br />

H<br />

N<br />

R 1<br />

O<br />

N<br />

H<br />

R 2<br />

O<br />

O R<br />

H<br />

4<br />

O<br />

H<br />

N<br />

N<br />

N<br />

R H<br />

OH<br />

3 O<br />

O NH 2<br />

beta-sheet form<strong>in</strong>g peptide<br />

functional<br />

group<br />

Figure 1. Representation of self-assembl<strong>in</strong>g peptidic unit.<br />

Cobalt (II) oxide is not the only <strong>in</strong>organic material that we<br />

succeeded to synthesize. We also had positive results with<br />

copper (II) oxide, z<strong>in</strong>c oxide, titanium (II) oxide and many<br />

other metals. The ability to realize <strong>in</strong> practice this number of<br />

<strong>in</strong>organic compounds truly testifies that designed template is<br />

universal and at the same time proves our concept of templatedirected<br />

synthesis.<br />

In summary, hav<strong>in</strong>g shown feasibility of the method we<br />

propose to employ soft-materials templat<strong>in</strong>g approach to<br />

create one-dimensional nanostructures. Novel supramolecular<br />

architectures will be built molecule-by-molecule, thus<br />

realiz<strong>in</strong>g “bottom-up” approach. By us<strong>in</strong>g non-covalent<br />

<strong>in</strong>termolecular forces, it will be possible to construct dynamic<br />

self-assembled systems. Highly tailorable small molecules<br />

facilitate <strong>in</strong>corporation of multifunctional groups for<br />

controlled morphology, chemical and physical characteristics,<br />

and surface chemistry. Controlled formation of shape at<br />

nanoscale will enable researchers to <strong>in</strong>vestigate novel<br />

multifunctional nanodevices.<br />

Acknowledgement. This work is supported by TUBITAK.<br />

*Correspond<strong>in</strong>g author: moguler@unam.bilkent.edu.tr<br />

Figure 2. TEM image of peptide nanofibers (left) and template<br />

directed synthesis of Cobalt(II) oxide nanotubes(right).<br />

applications. 10-13 Supramolecular chemistry opens <strong>in</strong>terest<strong>in</strong>g<br />

opportunities for new technology by direct<strong>in</strong>g the structure<br />

and function of materials at 1-100 nm scale, a length-scale<br />

which is difficult to access through conventional covalent<br />

2, 14-16<br />

chemistry.<br />

In this work, we explored the idea of form<strong>in</strong>g nanofibers by<br />

means of self-assembly of amyloid-like peptides and found<br />

that self-assembly is achieved by specially designed short<br />

peptide sequences that can form sheet-like hydrogen bonded<br />

structures. Moreover, functional groups can be relatively<br />

easily <strong>in</strong>troduced to the peptidic molecules and it is possible to<br />

control nanostructure surface morphology by affect<strong>in</strong>g the<br />

hydrogen bond<strong>in</strong>g orientation. These results suggest that<br />

obta<strong>in</strong>ed nanofibers can further be used as a template <strong>in</strong><br />

synthesis of <strong>in</strong>organic nanomaterials.<br />

We studied formation of several metal oxides and metal<br />

sulfides through m<strong>in</strong>eralization process. Metal salts were<br />

deposited on the surface of the preformed template, and the<br />

template was removed by calc<strong>in</strong>ation process. We found that<br />

this method is, <strong>in</strong>deed, feasible. For <strong>in</strong>stance, cobalt (II) oxide<br />

formed nanotubes. Structure of nanotubes was verified and<br />

characterized by SEM-EDAX and TEM.<br />

1. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenn<strong>in</strong>g, A. Chem.<br />

Rev. 2005, 105, 1491-1546.<br />

2. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Hugg<strong>in</strong>s, K. E.;<br />

Keser, M.; Amstutz, A. Science 1997, 276, 384-389.<br />

3. Jolliffe, K. A.; Timmerman, P.; Re<strong>in</strong>houdt, D. N. Angew. Chem., Int.<br />

Ed. 1999, 38, 933-937.<br />

4. Thurmond, K. B.; Kowalewski, T.; Wooley, K. L. J. Am. Chem. Soc.<br />

1997, 119, 6656-6665.<br />

5. Nguyen, S. T.; G<strong>in</strong>, D. L.; Hupp, J. T.; Zhang, X. Proc. Natl. Acad. Sci.<br />

U. S. A. 2001, 98, 11849-11850.<br />

6. Forrest, S. R. Nature 2004, 428, 911-918.<br />

7. Scheibel, T.; Parthasarathy, R.; Sawicki, G.; L<strong>in</strong>, X.-M.; Jaeger, H.;<br />

L<strong>in</strong>dquist, S. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4527-4532.<br />

8. Sanchez, C.; Arribart, H.; Guille, M. M. G. Nature Materials 2005, 4,<br />

277-288.<br />

9. Stupp, S. I. MRS Bull 2005, 30, 546-553.<br />

10. 10.Hwang, J. J.; Iyer, S. N.; Li, L.-S.; Claussen, R.; Harr<strong>in</strong>gton, D. A.;<br />

Stupp, S. I. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9662-9667.<br />

11. 11.Silva, G. A.; Czeisler, C.; Niece, K. L.; Beniash, E.; Harr<strong>in</strong>gton, D.<br />

A.; Kessler, J. A.; Stupp, S. I. Science 2004, 303, 1352-1355.<br />

12. Metzke, M.; O'Connor, N.; Maiti, S.; Nelson, E.; Guan, Z.<br />

Angewandte Chemie International Edition 2005, 44, 6529-6533.<br />

13. Lee, K. Y.; Alsberg, E.; Hsiong, S.; Comisar, W.; L<strong>in</strong>derman, J.; Ziff,<br />

R.; Mooney, D. Nano Letters 2004, 4, 1501-1506.<br />

14. Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Ch<strong>in</strong>,<br />

D. N.; Mammen, M.; Gordon, D. M. Acc. Chem. Res. 1995, 28, 37-44.<br />

15. Frechet, J. M. J. Journal of Polymer Science Part a-Polymer<br />

Chemistry 2003, 41, 3713-3725.<br />

16. Mirk<strong>in</strong>, C. A. Small 2005, 1, 14-16.<br />

6th Nanoscience and Nanotechnology Conference, zmir, 2010 400

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!