09.01.2015 Views

Photonic crystals in biology

Photonic crystals in biology

Photonic crystals in biology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Poster Session, Tuesday, June 15<br />

Theme A1 - B702<br />

OPTICAL CHEMICAL SENSOR BASED ON POLYMER NANOFIBERS FOR<br />

SILVER(I) ION DETECTION<br />

Sibel Kaçmaz 1* , Kadriye Ertek<strong>in</strong> 1 , Yavuz Ergün 1 , Mehtap Özdemir 2 , Ümit Cöcen 2<br />

1 University of Dokuz Eylul, Faculty of Arts and Sciences, Department of Chemistry, 35160, Izmir,Turkey<br />

2 University of Dokuz Eylul, Faculty Eng<strong>in</strong>eer<strong>in</strong>g, Department of Metallurgical and Materials Eng<strong>in</strong>eer<strong>in</strong>g, 35160, Izmir,Turkey<br />

Abstract- In this work, Ag + sens<strong>in</strong>g nanofibers were produced by electrosp<strong>in</strong>n<strong>in</strong>g of composites conta<strong>in</strong><strong>in</strong>g Y-5<br />

(4(dimethylam<strong>in</strong>o)benzaldehyde2-[[4(dimethylam<strong>in</strong>o)phenyl]methylene]hydrazone) dye, ethyl cellulose (EC) and/or polymethyl-methacrylate<br />

(PMMA). The fluorescence spectra of the embedded dyes <strong>in</strong> fiber and th<strong>in</strong> film form were recorded.<br />

Presence of ionic liquid <strong>in</strong> the matrix material enhanced electrosp<strong>in</strong>n<strong>in</strong>g process provid<strong>in</strong>g ionic conductivity.<br />

Results of the studies performed <strong>in</strong> liquid phase<br />

provide valuable <strong>in</strong>formation for researchers;<br />

however, they rema<strong>in</strong> far from applications <strong>in</strong> sensor<br />

technology at this stage. The <strong>in</strong>tegration of liquid<br />

components with solid state optics is not practical and<br />

molecule-based solid state approaches employ<strong>in</strong>g<br />

polymeric media should be developed.<br />

In this context, recently, a number of ultrasensitive<br />

fluorescent optical sensors for a variety of analytes<br />

have been demonstrated; new strategies are still be<strong>in</strong>g<br />

developed [1-3].<br />

Electrosp<strong>in</strong>n<strong>in</strong>g is a relatively simple and versatile<br />

method for creat<strong>in</strong>g high-surface-area polymeric<br />

fibrous membranes. In a typical process, a large static<br />

voltage is applied to a polymer solution to generate<br />

f<strong>in</strong>e jets of solution that dry <strong>in</strong>to an <strong>in</strong>terconnected<br />

membrane like web of small fibers [4]. Electrospun<br />

fibres can be functionalized by the use of proper<br />

<strong>in</strong>dicator and auxiliary additives for desired purposes.<br />

In this work, we reported the use of electrospun<br />

polymer fibers as highly responsive fluorescent<br />

optical sensors for Ag+ ions.<br />

A series of Ag + sensitive nanofibers with various<br />

compositions of poly-methyl-methacrylate (PMMA),<br />

ethyl cellulose (EC), plasticizer and ionic liquid (1-<br />

ethyl-3-methylimidazolium tetrafluoroborate) were<br />

produced and characterized by Scann<strong>in</strong>g Electron<br />

Microscopy (SEM). The Ag + sensitive dye Y-5<br />

4(dimethylam<strong>in</strong>)benzaldehyde2[[4(dimethylam<strong>in</strong>o)ph<br />

enyl]methylene]hydrazone dyes has been used as<br />

sens<strong>in</strong>g agent. (See Fig.1).<br />

The fiber diameters were measured between 480-<br />

680 nm for 40% DOP, 10% IL and 50% EC<br />

conta<strong>in</strong><strong>in</strong>g composites and 1.72-2.43 μm for 25%<br />

DOP, 25% IL and 50% PMMA conta<strong>in</strong><strong>in</strong>g<br />

composites.<br />

Upon exposure to Ag + ions the Y-5 dye exhibited<br />

fluorescence quench<strong>in</strong>g based response at 580 nm.<br />

Fig. 3 reveals response of the sens<strong>in</strong>g agent to Ag+<br />

ions <strong>in</strong> the concentration range of 3.51×10 -07 -<br />

1.43×10 -02 M.<br />

Figure 2. Scann<strong>in</strong>g electron microscopy (SEM) images of<br />

EC (40% DOP, 10% IL) based nanofiber.<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

g<br />

ı<br />

h<br />

c<br />

d<br />

e<br />

f<br />

a<br />

b<br />

g<br />

h<br />

ı<br />

c<br />

d<br />

e<br />

f<br />

a<br />

b<br />

0<br />

400 500 600 700<br />

Wavelength (nm)<br />

H 3 C<br />

C<br />

H 3<br />

N<br />

N<br />

N<br />

Figure 1. Chemical structure of Y-5 dye<br />

N<br />

CH 3<br />

CH 3<br />

Electrosp<strong>in</strong>n<strong>in</strong>g was performed at 25 kV voltage<br />

and at 0.3 mL/h flow rate. SEM micrograph of EC<br />

based nanofibers were shown <strong>in</strong> Fig. 2.<br />

Figure 3. Response of EC based sens<strong>in</strong>g nanofibers to Ag+<br />

ions.<br />

*Correspond<strong>in</strong>g author: sibel.kacmaz@ogr.deu.edu.tr<br />

[1]. J. S. Yang, and T. M. Swager, J. Am. Chem. Soc., 120,<br />

11864-11873(1998).<br />

[2] L. H. Chen, D. W. Mcbranch, H. L. Wang, R. Helgeson,<br />

F. Wudl, and D. G. Whitten, Proc. Natl. Acad. Sci., 96,<br />

12287-12292 (1999).<br />

[3] C. Fan, K. W. Plaxco, A. J. Heeger, J. Am. Chem. Soc.,<br />

124, 5642-5643 (2002).<br />

[4] D. H. Reneker, and I. Chun, Nanotechnology, 7, 215<br />

(1996).<br />

6th Nanoscience and Nanotechnology Conference, zmir, 2010 387

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!