09.01.2015 Views

Photonic crystals in biology

Photonic crystals in biology

Photonic crystals in biology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Poster Session, Tuesday, June 15<br />

Theme A1 - B702<br />

Microbial Synthesis of Gold Nanoparticles Us<strong>in</strong>g Rhodopseudomonas palustris NU51<br />

Stra<strong>in</strong><br />

Ayfer Caliş 1 ,Ayten Ozturk 2 ,Erhan Pisk<strong>in</strong> 1<br />

1 Department of Bioeng<strong>in</strong>eer<strong>in</strong>g, Hacettepe University, Ankara 06800, Turkey<br />

2 Department of Biology, Nigde University, Nigde 51100, Turkey<br />

Abstract__ In this study, photosynthetic bacteria Rhodopseudomonas palustrisNU51 stra<strong>in</strong> was screened to produce gold<br />

nanoparticles. R. palustris found successfully produce gold nanoparticles. For controll<strong>in</strong>g size and shape of nanoparticles, pH<br />

values changed ranged from 7 to 4. R. palustris biomass and aqua HAuCl 4 <strong>in</strong>cubated and gold nanoparticles characterised.<br />

Nanotechnology is an emerg<strong>in</strong>g field <strong>in</strong> the area of<br />

<strong>in</strong>terdiscipl<strong>in</strong>ary research, especially <strong>in</strong> biotechnology [1].<br />

Nanotechnology collectively describes technology and<br />

science <strong>in</strong>volv<strong>in</strong>g nano scale particles (nanoparticles) that<br />

<strong>in</strong>creases the scope of <strong>in</strong>vestigat<strong>in</strong>g and regulat<strong>in</strong>g the<br />

<strong>in</strong>terplay at cell level between synthetic materials and<br />

biological systems [2]. The current <strong>in</strong>terest <strong>in</strong> nanomaterials<br />

is focused on the controllable properties of size and shape<br />

because the optical,electronic, magnetic, and catalytic<br />

properties of metal nanoparticles strongly depend on their<br />

sizes and shapes [3]. Currently, there are various chemical<br />

and physical synthetic methods aimed at controll<strong>in</strong>g the<br />

size and distribution of nanoparticles. Most of these<br />

methods, however, utilise toxic and expensive chemicals,<br />

and problems are often experienced with nanoparticle<br />

stability, agglomeration of particles and the <strong>in</strong>ability to<br />

control crystal growth [4].<br />

Figure 1: UV visible spectra of gold nanoparticles by R.palustris (1x10 -3 M<br />

aqueous HAuCl 4,pH 6)<br />

[10]. Phototrophic bacteria are ubiquitous <strong>in</strong> fresh and<br />

mar<strong>in</strong>e water soil, wastewater, and activated sludge. They<br />

are metabolically the most versatile among all procaryotes:<br />

anaerobically photoautotrophic and photoheterotrophic <strong>in</strong><br />

the light and anaerobically chemoheterotrophic <strong>in</strong> the dark,<br />

so they can use a broad range of organic compounds as<br />

carbon and energy sources [11].<br />

In this study we explored phototrophic bacteria<br />

Rhodopseudomonas palustris NU51 stra<strong>in</strong> that isolated<br />

from Akkaya lake have been chosen to synthesize gold<br />

nanoparticles at room temparature through a s<strong>in</strong>gle step<br />

process (Figure 2b). Photosynthetic bacteria<br />

Rhodopseudomonas palustris were cultured <strong>in</strong> the<br />

medium conta<strong>in</strong><strong>in</strong>g puryvate, yeast extract, NaCl, NH 4 Cl<br />

and KH 2 PO 4 at pH 7 and room temparature. 1 g wet<br />

weight of bacteria biomass obta<strong>in</strong>ed from growth medium<br />

and resuspended <strong>in</strong> 1x10 -3 M aqueous HAuCl 4 . The<br />

reactants pH were adjusted pH 4, 5, 6, 7 us<strong>in</strong>g 0,1 M<br />

NaOH solution. All the experiments were conducted at<br />

room temparature and 48 h. After 48 h reaction colour<br />

change was observed. Different shape and size were<br />

obta<strong>in</strong>ed due to pH change. Particle size was measured<br />

with Zeta Sizer. The colour of the reaction turned pale<br />

yellow to pale purple. This colour change <strong>in</strong>dicates gold<br />

nanoparticle. Gold nanoparticles analyzed with UV<br />

spectrophotometer (Figure 1, Figure 2a). The results<br />

<strong>in</strong>dicates that max absorption attributed at surface<br />

plasmon resonance band (SPR) of the gold nanoparticles.<br />

Results show that R.palustris produce gold nanoparticle<br />

extracellularly.<br />

*Correspond<strong>in</strong>g author: ayfercalis@hotmail.com<br />

(a)<br />

(b)<br />

Figure 2: (a) UV visible spectra of gold nanoparticles by R.palustris<br />

(1x10 -3 M aqueous HAuCl 4,pH 7) (b) Rhodopseudomonas palustris NU51<br />

Currently, there is a grow<strong>in</strong>g need to develop<br />

environmentally benign nanoparticle synthesis process that<br />

does not use toxic chemicals <strong>in</strong> the synthesis protocols. An<br />

important aspect of nanotechnology is the development of<br />

synthesis of metal nanoparticles is a big challenge [5]. So<br />

the attractive procedure is us<strong>in</strong>g microorganisms such as<br />

bacteria and fungi to synthesize gold nanoparticles recently<br />

[6]. Microorganisms produce gold nanoparticles with<br />

different sizes: Bacillus subtilis 5-25 nm [7];<br />

Rhodopseudomonas capsulata 10-20 nm [8], Escherichia<br />

coli 20-25 nm [9], Pseudomonas aerug<strong>in</strong>osa 15-30 nm<br />

[1] K. Natarajan, S. Selvaraj, V.R. Murty, Digest Journal of<br />

Nanomaterials and Biostructures, 5, 135-140, (2010)<br />

[2] Du L, Jiang H, Liu X, Wang E, Electrochemistry Communications 9,<br />

1165-1170, (2007)<br />

[3] S. He, Y. Zhang, N. Gu, Biotechnol. Prog., 24, 476-480, (2008)<br />

[4] Y. Govender, T.L. Ridd<strong>in</strong>, M. Gericle, C.G. Whiteley, J.Nanopart<br />

Res, 12, 261-271, (2010)<br />

[5] G. S<strong>in</strong>garavelu, J.S. Arockiamary, V. G. Kumar, K. Gov<strong>in</strong>dajraju,<br />

Colloids and Surfaces B:Bio<strong>in</strong>terfaces, 57, 97-101, (2007)<br />

[6] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu, Materials<br />

Letters, 61, 3984-3987, (2007)<br />

[7] D. Fort<strong>in</strong>, T.J. Beveridge, In: Aeuerien E (ed) Biom<strong>in</strong>eralization, 7-<br />

22, (2000)<br />

[8] S. He, Y. Zhang, Z.Guo, N. Gu, 2008, Biotechnology Progress 24:<br />

476-480, (2008)<br />

[9] K. Deplanche, R.D. Woods, I.P. Mikheenko, R.E. Sockett, L.E.<br />

Macaskie, Biotechnology and Bioeng<strong>in</strong>eer<strong>in</strong>g 101: 873-880, (2008)<br />

[10] M.I. Husse<strong>in</strong>y, M.A. Ei-Aziz, Y. Badr, M.A. Mahmoud,<br />

Spectrochimica Acta Part A: Molecular and Biomolecular<br />

Spectroscopy 67: 1003-1006, (2007)<br />

[11] H.J. Bai, Z.M. Zhang, Y. Guo, G.E. Yang, Colloids and<br />

Surfaces B: Bio<strong>in</strong>terfaces, 70, 142-146, (2009)<br />

6th Nanoscience and Nanotechnology Conference, zmir, 2010 284

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!