17.11.2012 Views

This section is available on request - MAN Diesel & Turbo

This section is available on request - MAN Diesel & Turbo

This section is available on request - MAN Diesel & Turbo

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MAN</strong> B&W 2.02<br />

Propeller diameter and pitch, influence <strong>on</strong> the optimum propeller speed<br />

In general, the larger the propeller diameter D,<br />

the lower <str<strong>on</strong>g>is</str<strong>on</strong>g> the optimum propeller speed and the<br />

kW required for a certain design draught and ship<br />

speed, see curve D in the figure below.<br />

The maximum possible propeller diameter depends<br />

<strong>on</strong> the given design draught of the ship,<br />

and the clearance needed between the propeller<br />

and the aft body hull and the keel.<br />

The example shown in the figure <str<strong>on</strong>g>is</str<strong>on</strong>g> an 80,000 dwt<br />

crude oil tanker with a design draught of 12.2 m<br />

and a design speed of 14.5 knots.<br />

When the optimum propeller diameter D <str<strong>on</strong>g>is</str<strong>on</strong>g> increased<br />

from 6.6 m to 7.2. m, the power demand<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> reduced from about 9,290 kW to 8,820 kW, and<br />

the optimum propeller speed <str<strong>on</strong>g>is</str<strong>on</strong>g> reduced from 120<br />

r/min to 100 r/min, corresp<strong>on</strong>ding to the c<strong>on</strong>stant<br />

ship speed coefficient ∝ = 0.28 (see definiti<strong>on</strong> of<br />

∝ in Secti<strong>on</strong> 2.02, page 2).<br />

kW<br />

9.500<br />

9.400<br />

9.300<br />

9.200<br />

9.100<br />

9.000<br />

8.900<br />

8.800<br />

8.700<br />

8.600<br />

8.500<br />

Shaft power<br />

P/D<br />

1.00<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME-GI/ME -B engines<br />

0.95<br />

0.90<br />

0.85<br />

D = Optimum propeller diameters<br />

P/D = Pitch/diameter ratio<br />

0.80<br />

0.75<br />

D<br />

7.4m<br />

7.2m<br />

0.70<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 1 of 2<br />

Propeller<br />

speed<br />

70 80 90 100 110 120 130 r/min<br />

Fig. 2.02.01: Influence of diameter and pitch <strong>on</strong> propeller design<br />

Once an optimum propeller diameter of maximum<br />

7.2 m has been chosen, the corresp<strong>on</strong>ding optimum<br />

pitch in th<str<strong>on</strong>g>is</str<strong>on</strong>g> point <str<strong>on</strong>g>is</str<strong>on</strong>g> given for the design<br />

speed of 14.5 knots, i.e. P/D = 0.70.<br />

However, if the optimum propeller speed of 100<br />

r/min does not suit the preferred / selected main<br />

engine speed, a change of pitch away from optimum<br />

will <strong>on</strong>ly cause a relatively small extra power<br />

demand, keeping the same maximum propeller<br />

diameter:<br />

• going from 100 to 110 r/min (P/D = 0.62) requires<br />

8,900 kW i.e. an extra power demand of 80 kW.<br />

• going from 100 to 91 r/min (P/D = 0.81) requires<br />

8,900 kW i.e. an extra power demand of 80 kW.<br />

In both cases the extra power demand <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly<br />

of 0.9%, and the corresp<strong>on</strong>ding ‘equal speed<br />

curves’ are ∝ =+0.1 and ∝ =�0.1, respectively, so<br />

there <str<strong>on</strong>g>is</str<strong>on</strong>g> a certain interval of propeller speeds in<br />

which the ‘power penalty’ <str<strong>on</strong>g>is</str<strong>on</strong>g> very limited.<br />

7.0m<br />

0.65<br />

6.8m<br />

0.60<br />

6.6m<br />

0.55<br />

D<br />

P/D<br />

0.50<br />

178 47 03�2.0<br />

198 38 78�2.5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!