12.07.2015 Views

GP-B Post-Flight Analysis—Final Report - Gravity Probe B - Stanford ...

GP-B Post-Flight Analysis—Final Report - Gravity Probe B - Stanford ...

GP-B Post-Flight Analysis—Final Report - Gravity Probe B - Stanford ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Figure 11-20. Pointing angle difference between primary and redundant readouts . . . . . . . . . . . . . . . . . . . . . . . . . 328Figure 11-21. The color variation of IM Peg. The sum of the detector current of one of the axisis also shown to indicate how star brightness varies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328Figure 11-22. The scaled summed current for each of the four pairs of detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 329Figure 11-23. Comparison of four pairs of scaled summed current with each otherand with R band of ground measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329Figure 11-24. Scaled summed current compared with the values of channel XB.The ratios have been normalized for easy comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330Figure 11-25. Comparison of estimated photocurrent based on Science slopes andon least square fit slope derived from TRE snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331Figure 11-26. Temperature variation of telescope top plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Figure 11-27. Temperature variation of Window 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Figure 11-28. Temperature variation of Window 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Figure 11-29. Temperature variation of Window 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Figure 12-1. Integrated probe and dewar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335Figure 12-2. Temperature spiking at probe station 200 (primary cryogenic probe/dewar interface). . . . . . . . . 337Figure 12-3. Helium flow rate predicted by dewar model based on both the measuredshell temperatures and predicted temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340Figure 12-4. Main tank temperature in response to fourth heat pulse measurement with lineartrendlines before and after heat pulse. Temperature increase is taken to be the difference in thetwo trendline values at the middle of the pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342Figure 12-5. Plot of the remaining mass of liquid helium as a function of HPM measurement date with lineartrendline. The fact that the trendline does not project backwards to the original quantity of liquidhelium (taken to be 337 kg) is indicative of a scale factor error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343Figure 12-6. Flow meter and ATC flow rates as a function of UTC date starting at launch. Data encompass periodsof flow control (constant segments in the ATC data) as well as pressure control. . . . . . . . . . . . . . . . 344Figure 12-7. Mass remaining estimated from integrated flow meter and ATC flow rates. Trendline fits areextrapolated to zero mass. Since depletion did not occur in early July, it is clear that the dewar flowmeter results under-predicted lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344Figure 12-8. Flow meter data reduced by 10% and plotted with ATC flow rate and flow rate predicted by thedewar thermal model. Thermal model is based on measured shell temperatures rather thanpredicted shell temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345Figure 12-9. HPM data analyzed under three different assumptions together with extrapolated linear trendlines.348Figure 13-1. Locations of Forward and Aft ECU boxes on the <strong>GP</strong>-B spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353Figure 13-2. ECU-operated heaters in the dewar & probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354Figure 13-3. ECU-operated temperature sensors in the dewar & <strong>Probe</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354Figure 13-4. ECU-operated heaters and temperature sensors in the <strong>Probe</strong> and <strong>Probe</strong> windows . . . . . . . . . . . . 355Figure 13-5. General locations of ECU-controlled subsystems on the spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . 355Figure 13-6. A six-inch Vatterfly leakage exhaust valve at the top of the dewar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356Figure 13-7. The Gas Management System (GMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356Figure 13-8. UV lamps and the gyro electrostatic discharge system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Figure 13-9. The <strong>GP</strong>-B Proton Monitor box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Figure 13-10. Performance during Low Temperature Bakeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359Figure 13-11. ECU performance during IOC flux reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360Figure 13-12. ECU heater activity following launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361Figure 13-13. ECU heater activity during first month of IOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361Figure 13-14. ECU heater activity during the 2nd month of IOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362Figure 13-15. ECU heater activity from mid June - mid July, 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363Figure 13-16. ECU heater activity during gyro spinup and other critical IOC procedures . . . . . . . . . . . . . . . . . . . . . 363Figure 13-17. ECU heater activity during the last month of IOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364xx March 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!