25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1474 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

<strong>in</strong>to node i then e = −1<br />

, and e = 0 if the generator<br />

Q<strong>in</strong>i<br />

is not connected to node i .<br />

Similarly, the network satisfies Kirchhoff's voltage law,<br />

i.e., the sum of the pressure drops around any loop <strong>in</strong> the<br />

network must be equal to zero, or mathematically<br />

E H<br />

H = 0 or<br />

n<br />

∑<br />

j = 1<br />

E<br />

Hij<br />

H<br />

j<br />

Q<strong>in</strong>i<br />

= 0,<br />

i = 1, , l,<br />

(5)<br />

where H<br />

j<br />

is the pressure drop of the branch j , H is a<br />

vector of pressure drops, E<br />

H<br />

= [ EHij<br />

] is an l × n mesh<br />

matrix, <strong>in</strong> which each mesh (loop) is formed by a l<strong>in</strong>k and<br />

a unique cha<strong>in</strong> <strong>in</strong> the tree connect<strong>in</strong>g the two nodes of the<br />

l<strong>in</strong>k. The elements of E Hij<br />

are def<strong>in</strong>ed as follows:<br />

E<br />

Hij<br />

= 1 if branch j is conta<strong>in</strong>ed <strong>in</strong> mesh i and has the<br />

same direction, E<br />

Hij<br />

= −1<br />

if branch j is conta<strong>in</strong>ed <strong>in</strong><br />

mesh i and has the opposite direction, E<br />

Hij<br />

= 0 if branch<br />

j is not conta<strong>in</strong>ed <strong>in</strong> mesh i .<br />

In order to establish a dynamic model of m<strong>in</strong>imal order,<br />

one has to f<strong>in</strong>d <strong>in</strong>dependent variables as states of the<br />

system. We take the flows of l<strong>in</strong>k (co-tree) branches as<br />

state variables. If regards one time heartbeat as one<br />

period T , decomposes the blood pressure wave f (t)<br />

<strong>in</strong>to each k<strong>in</strong>d of simple harmonic wave comb<strong>in</strong>ation,<br />

that is:<br />

n<br />

⎛ 2πk<br />

⎞<br />

Q<strong>in</strong>(<br />

t)<br />

= Q0<br />

+ ⎜∑ak<br />

s<strong>in</strong>( t + φk<br />

) ⎟<br />

⎝ k=<br />

1 T ⎠<br />

(6)<br />

n<br />

= Q + a s<strong>in</strong>( kωt<br />

+ φ )<br />

0<br />

∑<br />

k=<br />

1<br />

k<br />

For convenience of analysis, we label the l<strong>in</strong>k branches<br />

(except the generator branch) from 1 to l. Def<strong>in</strong>e<br />

⎡Qc<br />

⎤ ⎡H<br />

c ⎤<br />

Q = ⎢ ⎥ , H = ⎢ ⎥ (7)<br />

⎣Qa<br />

⎦ ⎣H<br />

a ⎦<br />

so that Q c<br />

and H<br />

c<br />

vectors describe flow and pressure<br />

drop, respectively, <strong>in</strong> the l<strong>in</strong>ks, exclud<strong>in</strong>g the generator<br />

branch, and Q and H vectors describe them <strong>in</strong> the tree<br />

branches.<br />

The matrices<br />

where [18-19]<br />

E<br />

a<br />

Qa<br />

a<br />

E<br />

H<br />

and EQ<br />

<strong>in</strong> can be split <strong>in</strong>to blocks<br />

H<br />

[ E E ]<br />

E = (8)<br />

Q<strong>in</strong><br />

Hc<br />

Ha<br />

[ eQ<strong>in</strong><br />

EQc<br />

EQa]<br />

E = (9)<br />

= I , E<br />

Hc<br />

= I l × l<br />

, E<br />

( n−l<br />

) × ( n−l<br />

)<br />

k<br />

= − (10)<br />

T<br />

Ha<br />

E Qc<br />

Hence, the structure of the network can be expressed <strong>in</strong><br />

the matrix form as<br />

⎡ 0<br />

E = ⎢<br />

⎢⎣<br />

e<br />

Q<strong>in</strong><br />

E<br />

I<br />

Qc<br />

− E<br />

I<br />

T<br />

Qc<br />

⎤<br />

⎥<br />

⎥⎦<br />

(11)<br />

Furthermore,<br />

⎡T<br />

c<br />

T = ⎢<br />

⎣0<br />

0 , [ ] T<br />

⎤<br />

T T<br />

T<br />

⎥ R = R c<br />

Ra<br />

(12)<br />

a⎦<br />

Fluid circulation through the network of network<br />

model<strong>in</strong>g, accord<strong>in</strong>g to the aforementioned study, us<strong>in</strong>g<br />

the average method can solve the flow waveform, and<br />

then f<strong>in</strong>d its pulse wave flow waveform[15-20], that is:<br />

n 2<br />

⎛ a ⎞<br />

k −1<br />

Q<br />

⎜<br />

⎟<br />

c<br />

( t)<br />

= Qc0<br />

− ∑ V U<br />

⎝ k=<br />

1 4 ⎠<br />

(13)<br />

n<br />

⎛<br />

⎞<br />

+ Bc<br />

⎜∑<br />

ak<br />

s<strong>in</strong>( kωt<br />

+ φk<br />

) ⎟<br />

⎝ k=<br />

1<br />

⎠<br />

where<br />

Q ( t)<br />

= ( −E<br />

a<br />

Qc<br />

⎛<br />

+ Bc<br />

⎜<br />

⎝<br />

Q<br />

c0<br />

n<br />

∑<br />

k=<br />

1<br />

− e<br />

Q<strong>in</strong><br />

⎛<br />

Q +<br />

⎜<br />

0)<br />

⎝<br />

n<br />

∑<br />

k=<br />

1<br />

⎞<br />

ak<br />

s<strong>in</strong>( kωt<br />

+ φk<br />

) ⎟<br />

⎠<br />

T ( T)<br />

= T + E T E<br />

2<br />

a ⎞<br />

k<br />

⎟E<br />

4 ⎠<br />

Qc<br />

V<br />

−1<br />

U<br />

(14)<br />

T<br />

0 c Qc a Qc<br />

(15)<br />

2<br />

T 2<br />

{ B R } E col{ B R }<br />

U ( R,<br />

T,<br />

E)<br />

= col −<br />

(16)<br />

ci<br />

ci<br />

Qc<br />

ai<br />

ai<br />

T<br />

{ Q R } − E W<br />

V ( R,<br />

E,<br />

Q0)<br />

= diag<br />

c0i<br />

ci Qc<br />

(17)<br />

= E ( −E<br />

Q − e Q R (18)<br />

{<br />

Qcij Qci c0 Q<strong>in</strong> 0)<br />

ci} n l l<br />

W<br />

i ( − ) ×<br />

0<br />

( R,<br />

E,<br />

Q0<br />

and Q c<br />

) denotes l-dimensional solution of<br />

quadratic equation, that is:<br />

2<br />

T<br />

2<br />

Q R − E diag ( E Q + e Q ) R (19)<br />

i<br />

{ } 0<br />

c0 D c Qc<br />

Qci c0<br />

Q<strong>in</strong> 0 a<br />

=<br />

−<br />

such that V is nons<strong>in</strong>gular and − T 1 V is Hurwitz. Then<br />

for a given Q<br />

0<br />

> 0 , for sufficiently small a and<br />

sufficiently large ω the solutions of the system (1) ~ (6)<br />

4<br />

locally exponentially converge to a O ( 1 ω + a )<br />

neighborhood.<br />

IV. PULSE WAVE K VALUE SIMULATION AND CLINICAL<br />

PATHOLOGICAL DIAGNOSIS<br />

A. Healthy Middle-aged Cl<strong>in</strong>ical Detection and Pulse<br />

Wave Simulation Analysis<br />

To observe the relationship between the cl<strong>in</strong>ical value<br />

of K changes and the major physiological factors (such as<br />

the harden<strong>in</strong>g degree of the blood vessel wall, peripheral<br />

resistance, etc.). First we measured the pulse waveform to<br />

a thousand patients with different age groups, <strong>in</strong>clud<strong>in</strong>g<br />

healthy people and people with vary<strong>in</strong>g degrees of high<br />

blood pressure or vascular sclerosis. The <strong>in</strong>strument is<br />

used with cardiovascular blood flow parameters TP-CBS<br />

detector. After statistical analysis, the typical waveform<br />

and the correspond<strong>in</strong>g coefficient K are shown <strong>in</strong> Figure<br />

2.<br />

After measurement and cl<strong>in</strong>ical trials, the results<br />

showed that:<br />

(1) Young and healthy people, pregnant women,<br />

athletes are low vascular resistance, arterial elasticity, the<br />

K value is about 0.33 (Figure 2 (a));<br />

0<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!