25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1533<br />

t<br />

∗<br />

limsup ∫ [ β ( s, T ) g( s)( q( s) − p( s))<br />

t→∞<br />

T<br />

Δ γ + 1<br />

α()(( s g ())) s<br />

+<br />

− ] Δ s =∞.<br />

γ+<br />

1 γ<br />

( γ + 1) g ( s)<br />

(29)<br />

Then every solution of (5) is either oscillatory on [ t , ∞)<br />

0 T<br />

or tends to zero.<br />

proof Suppose that x is an eventually positive solution<br />

of (5), say xt () > 0, x( τ ( t)) > 0, x( δ ( t)) > 0for all t ≥ t for<br />

1<br />

some t ≥ t . We consider only this case, because the<br />

1 0<br />

proof for the case that x is eventually negative is similar.<br />

In the view of (5), by (H2) - (H5), and there exists<br />

t ≥ t such that for all t ≥ t , we have<br />

2 1<br />

2<br />

Δ<br />

( ( z ) γ<br />

γ<br />

α )<br />

Δ<br />

≤−( q( t) − p( t)) x ( δ( t)) < 0 , (30)<br />

γ<br />

then α( z<br />

Δ ) is strictly decreas<strong>in</strong>g on [ t 2<br />

, ∞ ). Hence z (t)<br />

Δ<br />

and z () t are of constant sign eventually. We claim that<br />

x()<br />

t is bounded. If not, there exists { t k<br />

} ⊆ [ t 2<br />

, ∞ ), such<br />

that lim t =∞ ,lim x( t ) =∞,<br />

and<br />

k→∞<br />

k<br />

k→∞<br />

k<br />

x( t ) = max{ x( s): t ≤ s≤<br />

t }.<br />

k<br />

S<strong>in</strong>ce lim τ ( t ) =∞, we can choose a large k such that<br />

k→∞<br />

0<br />

k<br />

τ ( t ) > t , and by (H2), we obta<strong>in</strong> that<br />

k<br />

x( τ( t )) = max{ x( s) : t ≤ s≤τ( t )}<br />

Therefore, for all large k,<br />

k<br />

0<br />

0<br />

≤ max{ x( s) : t ≤ s ≤ t } = x( t ).<br />

z( τ ( t )) ≥ x( t ) −c x( τ ( t )) ≥ (1 − c ) x( t )<br />

k k 0 k<br />

0 k<br />

,<br />

and lim zt ( ) =∞. From (H1) and (30), as <strong>in</strong> the proof of<br />

k→∞<br />

k<br />

Theorem 1 [4], there exists t 3<br />

≥ t 2<br />

such that for all t ≥ t ,<br />

3<br />

we have<br />

In view of (5), (30) and (31), we get<br />

0<br />

k<br />

Δ<br />

zt () > 0, z () t > 0. (31)<br />

Δ<br />

( ( z ) γ<br />

γ<br />

α )<br />

Δ<br />

≤−( q( t) − p( t)) z ( δ( t)) < 0. (32)<br />

Now by us<strong>in</strong>g the same proof of Theorem 1, we get a<br />

contradiction with (29). Thus x (t) is bounded and hence z<br />

(t) is bounded.<br />

Also, by us<strong>in</strong>g (H1) and the same proof of Theorem 1<br />

Δ<br />

<strong>in</strong> [4], there exist t 4 ≥ t 3 such that z () t > 0on [t 4 , ∞).<br />

There are two cases.<br />

Δ<br />

Case 1 zt () > 0 and z () t > 0. As <strong>in</strong> the proof of<br />

Theorem 1, we get a contradiction with (29).<br />

Δ<br />

Case 2 zt () < 0and z ( t) > 0 . We claim lim xt ( ) = 0 .<br />

k<br />

k<br />

k<br />

t→∞<br />

Assume not, then there exists { t } ⊆[ t , ∞)<br />

such that<br />

k 5<br />

lim t =∞,<br />

lim xt ( ) = : b> 0 and x( t ) = max{ x( s):<br />

t ≤ s<br />

k<br />

k<br />

k<br />

0<br />

k→∞<br />

t k<br />

k→∞<br />

≤ }. But, by x( τ ( t )) ≤ x( t ), we get<br />

k<br />

k<br />

0 > zt ( ) ≥ xt ( )(1 −c) →b(1 − c) > 0, as k→∞.<br />

k<br />

k<br />

0 0<br />

Which is a contradiction. This completes the proof.<br />

Corollary 4 Assume that (H1) - (H5) hold, Furthermore,<br />

suppose that for all sufficiently large T ∗ , and for δ ( T ) ><br />

T ∗<br />

,<br />

we have<br />

t<br />

∗<br />

α()<br />

s<br />

limsup ∫ ( sβ<br />

( s, T )( q( s) − p( s)) − ) Δ s =∞.<br />

t→∞<br />

T<br />

γ+<br />

1 γ<br />

( γ + 1) s<br />

Then every solution of (5) is either oscillatory on [ t , ∞)<br />

0 T<br />

or tends to zero.<br />

Corollary 5 Assume that (H1) - (H5) hold, Furthermore,<br />

suppose that for all sufficiently large T ∗ , and for δ ( T ) ><br />

T ∗<br />

,<br />

we have<br />

t<br />

∗<br />

limsup ∫ β (, sT)(() qs − ps ()) Δ s=∞.<br />

t→∞<br />

T<br />

Then every solution of (5) is either oscillatory on [ t , ∞)<br />

0 T<br />

or tends to zero.<br />

We next study a Philos-type oscillation criteria for (5).<br />

Theorem 4 Assume that (H1) - (H5) hold. Let g (t) be<br />

as def<strong>in</strong>ed <strong>in</strong> Theorem 1, and H, h∈C rd<br />

( D, )<br />

such that<br />

H ∈R . Furthermore, suppose that there exists a<br />

positive rd-cont<strong>in</strong>uous function ϕ () t such that (24), (25)<br />

hold, and for all sufficiently largeT ∗ , we have<br />

1 t<br />

∗<br />

limsup ∫ { β ( s, T ) g( s)( q( s) − p( s)) H( t, s)<br />

t→∞<br />

t0<br />

Htt (, )<br />

0<br />

α()( s h (,)) t s<br />

− } Δ s =∞.<br />

γ + 1<br />

−<br />

γ+<br />

1 γ<br />

( γ + 1) g ( s)<br />

(33)<br />

Then every solution of (5) is either oscillatory on [ t , ∞)<br />

0 T<br />

or tends to zero.<br />

Proof Suppose that (5) has a nonoscillatory solution x<br />

(t), without loss of generality, say xt () > 0, x( τ ( t)) > 0,<br />

x( δ ( t)) > 0, for all t ≥ t , for some t<br />

1<br />

1<br />

≥ t 0<br />

. By (H2) - (H5),<br />

we obta<strong>in</strong> that (30) holds for all t ≥ t , and zt () and<br />

1<br />

Δ<br />

z () t are of constant sign eventually. Similar to the proof<br />

of Theorem 3, we claim that x()<br />

t is bounded. If not, there<br />

exists{ t } ⊆[ t , ∞ ), for all large k, there exists t<br />

k 1<br />

2<br />

≥ t 1<br />

, such<br />

that (31) and (32) hold for t ≥ t . Aga<strong>in</strong> we def<strong>in</strong>e wt () as<br />

2<br />

<strong>in</strong> the proof of Theorem 1, then there exists t 3<br />

≥ t 2<br />

,<br />

sufficiently large such that for t<br />

∗<br />

≥ t and for t ≥ t ∗<br />

, we<br />

3<br />

f<strong>in</strong>d<br />

β (, tt) gt ()( qt () − pt ())<br />

3<br />

Δ g () t γ g()<br />

t<br />

≤− w () t + w () t −<br />

( w ()). t<br />

g t t g t<br />

Δ<br />

σ σ λ<br />

σ 1 γ σ λ<br />

() α ()( ())<br />

And similar to the proof of the theorem 3, we obta<strong>in</strong><br />

1 t<br />

∫ [ β ( s, t ) g( s)( q( s) − p( s)) H( t, s)<br />

t<br />

Htt (, )<br />

0 3<br />

0<br />

γ + 1<br />

( h ( t, s)) α( s) −<br />

γ+<br />

1 γ ] s (<br />

∗<br />

ϕ t ) w (<br />

∗<br />

t )<br />

− Δ ≤ +<br />

( γ + 1) g ( s)<br />

(34)<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!