25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1438 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

(U20) ( ∀x)( φ → χ) →(( ∃x) φ → χ)<br />

(x is not free <strong>in</strong><br />

χ )<br />

(U21) ( ∀x)( φ ∨χ) →(( ∀x) φ∨ χ)<br />

(x is not free <strong>in</strong> χ )<br />

Deduction rules of ∀ UL − h∈ (0,<br />

1] are three rules. They are:<br />

Modus Ponens (MP): from φ, φ → ψ <strong>in</strong>fer ψ ;<br />

Necessitation: from φ <strong>in</strong>fer Δ φ ;<br />

Generalization: from φ <strong>in</strong>fer ( ∀ x)<br />

φ .<br />

The mean<strong>in</strong>g of “t substitutable for x <strong>in</strong> φ ( x)<br />

” and “x<br />

is not free <strong>in</strong> χ ” <strong>in</strong> the above def<strong>in</strong>ition have the same<br />

mean<strong>in</strong>g <strong>in</strong> the classical first-order predicate logic,<br />

moreover, we can def<strong>in</strong>e the concepts such as proof,<br />

theorem, theory, deduction from a theory T, T-<br />

consequence <strong>in</strong> the system ∀ UL − h∈ (0,<br />

1] . T φ denotes that<br />

φ is provable <strong>in</strong> the theory T. φ denotes that φ is a<br />

theorem of system ∀ ULh<br />

∈ (0 , 1]<br />

. Let<br />

−<br />

Thm( ∀ UL h∈ (0,<br />

1] ) = { φ ∈ J | φ} , Ded( T) = { φ∈ J | T φ}<br />

.<br />

Be<strong>in</strong>g the axioms of propositional system UL − h∈ (0, 1] are <strong>in</strong><br />

predicate system ∀ UL − h∈ (0,<br />

1] , then the theorems <strong>in</strong><br />

UL h∈ (0, 1] are theorems <strong>in</strong> ∀ UL − h∈ (0,<br />

1] . Accord<strong>in</strong>g the<br />

similar proof <strong>in</strong> [3, 16, 17] we can get the follow<strong>in</strong>g<br />

lemmas.<br />

Lemma 1 The hypothetical syllogism holds <strong>in</strong><br />

∀ , i.e. let Γ= { φ → ψψ , → χ}<br />

, then Γ φ → χ .<br />

UL − h∈ (0,<br />

1]<br />

Lemma 2 ∀ UL − h∈ (0,<br />

1] proves:<br />

(1) φ → φ ;<br />

(2) φ →( ψ → φ)<br />

;<br />

(3) ( φ →ψ) →(( φ →γ) →( ψ → γ))<br />

;<br />

(4) ( φ & ( φ →ψ))<br />

→ ψ ;<br />

(5) Δφ ≡ Δφ&<br />

Δ φ .<br />

Lemma 3 If T = { φ → ψ, χ → γ}<br />

, then<br />

T ( φ & χ) → ( ψ & γ)<br />

.<br />

Let J is first-order predicate language, L is l<strong>in</strong>early<br />

ordered ŁΠG − algebra, M = ( M, ( rP )<br />

P, ( mc) c)<br />

is called a<br />

L-evaluation for first-order predicate language J, which<br />

M is non-empty doma<strong>in</strong>, accord<strong>in</strong>g to each n-ary<br />

predicate P and object constant c, r<br />

P<br />

is L-fuzzy n-ary<br />

n<br />

relation: rP<br />

: M → L, m<br />

c<br />

is an element of M.<br />

Def<strong>in</strong>ition 7 Let J be predicate language, M is L-<br />

evaluation of J, x is object variable, P∈ J .<br />

(i) A mapp<strong>in</strong>g v: Term( J ) → M is called M-<br />

evaluation, if for each c ∈Const (J), vc () = mc<br />

;<br />

(ii)Two M-evaluation vv′ , are called equal denoted<br />

by v ≡<br />

x<br />

v′ if for each y∈<br />

Var( J) \ x , there is<br />

vy ( ) = v′<br />

( y)<br />

.<br />

(iii) The value of a term given by M, v is def<strong>in</strong>ed by:<br />

x = v( x)<br />

; c = mc<br />

. We def<strong>in</strong>e the truth value<br />

M, v<br />

M,<br />

v<br />

L<br />

M v<br />

φ ,<br />

of a formula φ as follow<strong>in</strong>g. Clearly, ∗,⇒,Δ<br />

denote the operations of L .<br />

L<br />

1, 2,, n<br />

=<br />

M v P 1<br />

,,<br />

, M, v n M,<br />

v<br />

L L L<br />

→ = ⇒<br />

M, v M, v M,<br />

v<br />

L L L<br />

& = ∗<br />

M, v M, v M,<br />

v<br />

L<br />

L<br />

Pt ( t t) r( t t )<br />

φ ψ φ ψ<br />

φ ψ φ ψ<br />

0 = 0; 1 = 1<br />

M, v<br />

M,<br />

v<br />

L<br />

L<br />

φ<br />

M, v<br />

M,<br />

v<br />

L<br />

L<br />

φ<br />

M, v M,<br />

v<br />

L<br />

L<br />

φ φ<br />

M, v<br />

M,<br />

v′<br />

L<br />

L<br />

φ φ<br />

M, v<br />

M,<br />

v′<br />

Δ φ = Δ<br />

− φ =−<br />

( ∀ x) = <strong>in</strong>f{ | v ≡ v ′ }<br />

( ∃ x) = sup{ | v ≡ v ′ }<br />

In order to the above def<strong>in</strong>itions are reasonable, the<br />

<strong>in</strong>fimum/supremum should exist <strong>in</strong> the sense of L. So the<br />

structure M is L-safe if all the needed <strong>in</strong>fima and suprema<br />

L<br />

exist, i.e. φ<br />

M ,<br />

is def<strong>in</strong>ed for all φ, v .<br />

v<br />

Def<strong>in</strong>ition 8 Let φ ∈ J , M be a safe L-structure for J.<br />

(i) The truth value of φ <strong>in</strong> M is<br />

L<br />

L<br />

φ = <strong>in</strong>f{ φ ,v<br />

| v M − evaluation} .<br />

M<br />

M<br />

(ii) A formula φ of a language J is an L -tautology if<br />

φ<br />

L<br />

= 1 for each safe L-structure M. i.e. L<br />

M L<br />

φ 1<br />

Mv ,<br />

= for<br />

each safe L-structure M and each M-valuation of object<br />

variables.<br />

Remark For each h∈ (0, 1] , k∈ (0, 1) ,<br />

([0, 1] ,∧<br />

hk ,<br />

,⇒<br />

hk ,<br />

, m<strong>in</strong>, max, 0, 1 ,Δ,−)<br />

is a ŁΠG − -algebra.<br />

So the predicate system ∀ UL − h∈ (0,<br />

1] can be considered the<br />

axiomatization for 1-level universal AND operator.<br />

III. SOUNDNESS OF SYSTEM ∀ h (0 1]<br />

x<br />

x<br />

UL − ∈ ,<br />

Def<strong>in</strong>ition 9 A logic system is soundness if for its each<br />

theorem φ , we can get φ is a tautology.<br />

Theorem 5 (Soundness of axioms) The axioms of<br />

∀ are L-tautologies for each l<strong>in</strong>early ordered<br />

UL − h∈ (0,<br />

1]<br />

G −<br />

ŁΠ -algebra L.<br />

Proof. The axioms of (U1)- (U16) are L-tautologies<br />

can be get as <strong>in</strong> propositional calculus. We verify (U17)-<br />

(U21)<br />

To verify (U17), (U18), let y is substitutable for x to<br />

φ , when v′′ ≡<br />

x<br />

v and v′′ ( x) = v( y)<br />

, there is<br />

L<br />

L<br />

L<br />

L<br />

φ( y) = φ ( x)<br />

So, ( ∀ x) φ( x) = <strong>in</strong>f ( )<br />

M, v<br />

M,<br />

v′′<br />

M v v′≡ v<br />

φ x<br />

, M,<br />

v′<br />

≤<br />

L L L<br />

φ( y) ≤ sup ( ) ( ) ( )<br />

M v v<br />

φ x = ∃ ′<br />

x φ x , then<br />

, ′′ M, v′<br />

M,<br />

v<br />

( ∀ x ) φ( x ) → φ( y ) = ( ∀ x ) φ( x ) → φ( y ) = 1.<br />

M, v M, v M,<br />

v<br />

For (U19), let x not free <strong>in</strong> χ , then for each M-<br />

valuation w, when w≡<br />

x<br />

v , we have v = φ( x)<br />

.<br />

M, w<br />

M,<br />

v<br />

We have to prove<br />

L L L L<br />

<strong>in</strong>f ( v ⇒ φ ) ≤( v ⇒ <strong>in</strong>f φ ) .<br />

w<br />

M, w M, w M, v w M,<br />

w<br />

L<br />

L<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!