25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1530 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

The derivative and the forward jump operator are<br />

related by the useful formula<br />

σ<br />

f f μ f<br />

Δ<br />

σ<br />

= + , where f : = f σ.<br />

We will also make use of the follow<strong>in</strong>g product and<br />

quotient rules for the derivative of the product f g and the<br />

quotient f g( gg σ ≠ 0) of two differentiable functions f<br />

and g :<br />

Δ<br />

⎛ f ⎞ f g−<br />

f g<br />

( f g) Δ = f Δ g+ f σ<br />

g<br />

Δ<br />

, and ⎜ ⎟ =<br />

⎝ g ⎠ gg σ<br />

Δ<br />

Δ<br />

. (6)<br />

By us<strong>in</strong>g the product rule, the derivative of f () t =<br />

( t − α) m<br />

for m ∈ andα ∈ T can be calculated as<br />

m−1<br />

Δ<br />

v<br />

m−v−1<br />

() = ( σ() −α)( −α) .<br />

v=<br />

0<br />

f t ∑ t t<br />

(7)<br />

For a, b∈ T and a differentiable function f , the<br />

Cauchy <strong>in</strong>tegral of f Δ is def<strong>in</strong>ed by<br />

b Δ<br />

∫a f () t Δ t = f( b) − f( a)<br />

.<br />

The <strong>in</strong>tegration by parts formula follows from (6) and<br />

reads<br />

b Δ<br />

b b σ Δ<br />

∫ f () tgt () Δ t= ftgt () ()| −∫ f tg()<br />

tΔt.<br />

a<br />

To prove our ma<strong>in</strong> results, we will use the formula<br />

1 1<br />

( x γ Δ<br />

( t)) [ hx σ (1 h) x] γ − Δ<br />

= γ + − dhx ( t)<br />

0<br />

a<br />

a<br />

∫ . (8)<br />

which is a simple consequence of Keller′s cha<strong>in</strong> rule [2].<br />

Also, we need the follow<strong>in</strong>g lemma [5].<br />

Lemma 1 Assume A and B are nonnegtive constants, λ<br />

> 1, then<br />

λ<br />

−<br />

− ≤( − 1) .<br />

1<br />

AB λ A λ λ B<br />

λ<br />

The reader is referred to [2] for more detailed and<br />

extensive developments <strong>in</strong> calculus on time scales.<br />

III. MAIN RESULTS<br />

First, we state the oscillation criteria for (4).<br />

Set<br />

yt () = xt () + ctx () ( τ ()). t<br />

(9)<br />

Theorem 1 Assume that (H1) - (H5) hold, Furthermore,<br />

suppose that there exists a positive Δ−differentiable<br />

function g()<br />

t such that for all sufficiently large T ∗<br />

, and<br />

∗<br />

for all δ (T) > T , we have<br />

t<br />

∗<br />

limsup ∫ ( β (, sT ) gsQs () () −<br />

t→∞<br />

T<br />

α( s)(( g ( s)) )<br />

( γ + 1) g ( s)<br />

Δ γ + 1<br />

+<br />

γ+<br />

1 γ<br />

) Δ s =∞.<br />

Then every solution of (4) is oscillatory on [ t , ∞)<br />

0 T<br />

.<br />

(10)<br />

proof Suppose (4) has a nonoscillatory solution x (t).<br />

without loss of generality, there exists some t 1<br />

≥ t 0<br />

,<br />

sufficiently large such that xt () > 0, x( τ ( t)) > 0, x( δ ( t))<br />

> 0 for all t ≥ t . Hence In the view of (9), by (H1) we<br />

1<br />

get yt () > 0. from (4) and by (H2) - (H5), we have that<br />

Δ<br />

( y )) γ<br />

γ<br />

α<br />

Δ<br />

≤ −( q() t − p()) t x ( δ()) t < 0,<br />

and us<strong>in</strong>g the same proof of Theorem 1 [4], there exists<br />

t ≥ t such that for all t ≥ t , we have<br />

2 1<br />

2<br />

Δ<br />

⎧yt () > 0, y () t > 0,<br />

(11)<br />

⎨<br />

Δ<br />

( ( y ) γ Δ<br />

γ<br />

⎩ α ) ≤ −( q( t) − p( t))(1 − c( δ( t))) y ( δ( t)) < 0.<br />

By the def<strong>in</strong>ition of Qt (), we get<br />

Δ<br />

( ( y ) γ<br />

γ<br />

α )<br />

Δ<br />

≤ − Q( t) y ( δ( t)) < 0. (12)<br />

Make the generalized Riccati substitution<br />

Δ γ<br />

α()( t y ()) t<br />

wt () = gt ()<br />

. (13)<br />

γ<br />

y () t<br />

By the product and quotient rules, we have for all t ≥ t2<br />

Δ γ Δ<br />

Δ gt ()( α()( t y())) t ⎛ gt () ⎞<br />

Δ γ<br />

w () t = ( ()( t y ())) t<br />

γ<br />

+⎜ γ ⎟ α<br />

y () t ⎝ y () t ⎠<br />

Δ γ Δ<br />

gt ()( α()( t y()))<br />

t<br />

= +<br />

γ<br />

y () t<br />

Δ<br />

γ Δ<br />

g () t g()( t y ()) t<br />

Δ γ σ<br />

( −<br />

)( α( t)( y ( t)) ) .<br />

γσ γ γσ<br />

y () t y () t y () t<br />

From (12) - (14), we obta<strong>in</strong><br />

Δ<br />

Δ<br />

⎛ y( δ ( t)) ⎞ g ( t)<br />

σ<br />

w () t ≤− g() t Q() t ⎜ ⎟ + w () t<br />

σ<br />

⎝ yt () ⎠ g () t<br />

σ γ Δ<br />

gtw () ()( t y()) t<br />

−<br />

σ<br />

γ .<br />

g () t y () t<br />

γ<br />

Δ<br />

σ<br />

(14)<br />

(15)<br />

First consider the case when δ () t ≥ t . For all large t,<br />

Δ<br />

from y () t > 0, we have<br />

which implies that<br />

y( δ ( t))<br />

≥ 1 ,<br />

yt ()<br />

Δ<br />

σ γ Δ<br />

Δ<br />

g () t σ g() t w ()( t y ()) t<br />

w () t ≤− g() t Q() t + w () t − . (16)<br />

σ σ γ<br />

g () t g () t y () t<br />

Next consider the case when δ () t ≤ t, for all large t. By<br />

us<strong>in</strong>g α( y<br />

Δ )<br />

γ<br />

is strictly decreas<strong>in</strong>g on [ t 2<br />

, ∞ ) , we can<br />

choose t ≥ t such that δ () t ≥ t , for t ≥ t . Then we<br />

3 2<br />

2<br />

3<br />

obta<strong>in</strong><br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!