25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1444 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

⎡0 0 0 0 0 0 0 0⎤<br />

1 0 1 [0 0 1 0 0 0 0 0] T<br />

⎢<br />

0 0 1 0 0 0 0 0<br />

⎥<br />

1 1 0 [0 1 0 0 0 0 0 0] T<br />

⎢<br />

⎥<br />

1 1 1 [1 0 0 0 0 0 0 0] T<br />

⎢0 0 0 1 0 0 0 0⎥<br />

⎢<br />

⎥<br />

⎢0 0 0 0 1 0 0 0<br />

=<br />

⎥<br />

Then, we can get the present-state matrix and nextstate<br />

matrix as <strong>in</strong> (21) and (22).<br />

⎢ 0 0 0 0 0 1 0 0 ⎥<br />

⎢<br />

⎥<br />

⎢0 0 0 0 0 0 1 0⎥<br />

⎡1 0 0 0 0 0 0 0⎤<br />

⎢<br />

0 0 0 0 0 0 0 1<br />

⎥<br />

⎢<br />

⎢<br />

⎥<br />

0 1 0 0 0 0 0 0<br />

⎥<br />

⎢<br />

⎥<br />

⎢⎣1 1 0 0 0 0 0 0⎥⎦<br />

⎢0 0 1 0 0 0 0 0⎥<br />

⎢<br />

⎥<br />

0 0 0 1 0 0 0 0<br />

Us<strong>in</strong>g some theorems <strong>in</strong> [15][18][23][24] and<br />

Qt () =<br />

⎢<br />

⎥<br />

⎢<br />

A( t + 1) = LA( t)<br />

, the structure matrix L is as <strong>in</strong> (20).<br />

0 0 0 0 1 0 0 0 ⎥<br />

(21)<br />

⎢<br />

⎥<br />

We can get the structure matrix by the conventional<br />

⎢0 0 0 0 0 1 0 0⎥<br />

⎢<br />

method. But the process is very complex and the biggest<br />

0 0 0 0 0 0 1 0<br />

⎥<br />

⎢<br />

⎥<br />

order of the matrices <strong>in</strong> the equation (20) is more than<br />

⎢⎣<br />

0 0 0 0 0 0 0 1⎥⎦<br />

1024.<br />

⎡0 0 0 0 0 0 0 0⎤<br />

IV. NEW METHOD FOR CALCULATION OF STRUTURE<br />

⎢<br />

0 0 1 0 0 0 0 0<br />

⎥<br />

⎢<br />

⎥<br />

MATRIX<br />

⎢0 0 0 1 0 0 0 0⎥<br />

The conventional method to calculate the structure<br />

⎢<br />

⎥<br />

0 0 0 0 1 0 0 0<br />

matrix L is very complex. A new method will be<br />

Qt ( + 1) =<br />

⎢<br />

⎥<br />

(22)<br />

⎢ 0 0 0 0 0 1 0 0 ⎥<br />

proposed <strong>in</strong> this section.<br />

⎢<br />

⎥<br />

Def<strong>in</strong>ition 3: Form a square matrix by all the presentstate<br />

vectors A() t =×<br />

⎢0 0 0 0 0 0 1 0⎥<br />

l<br />

i=<br />

1<br />

Ai()<br />

t , the matrix is called presentstate<br />

matrix, denoted by Qt ().There is another matrix<br />

⎢⎣<br />

1 1 0 0 0 0 0 0⎥⎦<br />

correspond to Qt (), called next-state matrix, denoted by<br />

⎢0 0 0 0 0 0 0 1⎥<br />

⎢<br />

⎥<br />

Therefore, we can get the structure matrix L = Q( t+<br />

1)<br />

Qt+ ( 1) .<br />

<strong>in</strong> (23).<br />

As A ( t + 1) = LA ( t)<br />

, we can derive<br />

⎡0 0 0 0 0 0 0 0⎤<br />

Q ( t + 1) = LQ ( t)<br />

. It is easy to know that<br />

⎢<br />

0 0 1 0 0 0 0 0<br />

⎥<br />

Qt () l l ∈L , and Qt () is a <strong>in</strong>vertible matrix. Then the<br />

⎢<br />

⎥<br />

2 × 2<br />

⎢0 0 0 1 0 0 0 0⎥<br />

−1<br />

structure matrix L = Q( t+ 1)[ Q( t)]<br />

. Further simplify the<br />

⎢<br />

⎥<br />

0 0 0 0 1 0 0 0<br />

calculation, Qt () can be arrayed to 2 l -order identity<br />

L = Q( t+ 1) =<br />

⎢<br />

⎥<br />

(23)<br />

⎢ 0 0 0 0 0 1 0 0 ⎥<br />

matrix. Therefore, L = Q( t+ 1) .<br />

⎢<br />

⎥<br />

⎢0 0 0 0 0 0 1 0⎥<br />

For the example 3, we have the truth table as TABLE<br />

⎢0 0 0 0 0 0 0 1⎥<br />

II.<br />

⎢<br />

⎥<br />

⎢⎣<br />

1 1 0 0 0 0 0 0⎥⎦<br />

TABLE II.<br />

TRUTH TABLE OF EXAMPLE 3<br />

We can compare the two structure matrix L ga<strong>in</strong>ed <strong>in</strong><br />

Section 3 and our method. And the structure matrix<br />

A 3 (t) A 2 (t) A 1 (t) A 3 (t+1) A 2 (t+1) A 1 (t+1)<br />

which is ga<strong>in</strong>ed by our approach is correct.<br />

0 0 0 0 0 1<br />

0 0 1 0 1 0 By our method, it is easy to get the structure matrix<br />

0 1 0 0 1 1 through the truth table which reflects the transformation<br />

0 1 1 1 0 0 of the states. Our method to get the structure matrix is<br />

1 0 0 1 0 1<br />

simpler than the conventional method.<br />

1 0 1 1 1 0<br />

1 1 0 0 0 0<br />

1 1 1 0 0 0 V. APPLICATION OF STUCTURE MATRIX ON ANALYSIS OF<br />

BOOLEAN NETWORKS<br />

The state vectors’ table is as TABLE III.<br />

S<strong>in</strong>ce a Boolean network has only f<strong>in</strong>ite states, a<br />

trajectory will eventually enter <strong>in</strong>to a fixed po<strong>in</strong>t or a<br />

TABLE III.<br />

STATE VECTORS’ TABLE<br />

cycle. The fixed po<strong>in</strong>ts and cycles form the most<br />

important topological structure of a Boolean network.<br />

A 3 (t) A 2 (t) A 1 (t) A (t)<br />

Therefore, there are many methods to analyze the fixed<br />

0 0 0 [0 0 0 0 0 0 0 1] T<br />

0 0 1 [0 0 0 0 0 0 1 0] T po<strong>in</strong>ts and cycles of Boolean networks.<br />

0 1 0 [0 0 0 0 0 1 0 0] T<br />

Analyz<strong>in</strong>g the structure matrix of the system, easily<br />

0 1 1 [0 0 0 0 1 0 0 0] T<br />

computable formulas are obta<strong>in</strong>ed to show the number of<br />

1 0 0 [0 0 0 1 0 0 0 0] T fixed po<strong>in</strong>ts, the numbers of circles of different lengths<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!