25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1582 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

2<br />

⎛ ⎞ ⎛ ⎞<br />

K σ<br />

ln ⎜ ⎟−⎜r − ⎟T<br />

S0<br />

⎝ 2 ⎠<br />

a =<br />

⎝ ⎠<br />

σ T<br />

And the <strong>in</strong>tegral <strong>in</strong>terval is divided to two parts<br />

( −∞,a] ∪ [a, +∞ )<br />

⎛<br />

⎞<br />

e E S K S e K e dx<br />

⎛ 2 ⎞<br />

2<br />

+∞ σ<br />

σ Tx+ ⎜<br />

r−<br />

2 ⎟<br />

T<br />

x<br />

+<br />

1 −<br />

−rT<br />

⎝ ⎠<br />

2<br />

( − ) = ⎜<br />

⎟<br />

T ∫ 0<br />

−<br />

⎜<br />

⎟<br />

a<br />

2π<br />

where<br />

⎝<br />

= I + I<br />

1 2<br />

2 2<br />

x ⎛ ⎞<br />

+∞ − +σ Tx+ r− T<br />

rT S<br />

σ<br />

− 0 2 ⎜ 2 ⎟<br />

⎝ ⎠<br />

∫<br />

I1<br />

= e e dx<br />

2π<br />

a<br />

2<br />

+∞<br />

x<br />

rT K −<br />

−<br />

2<br />

∫<br />

I2<br />

=−e e dx<br />

2π<br />

For I 1<br />

,<br />

a<br />

2 2<br />

x ⎛ ⎞<br />

+∞ − +σ Tx+ r− T<br />

rT S<br />

σ<br />

− 0 2 ⎜ 2 ⎟<br />

⎝ ⎠<br />

∫<br />

I1<br />

= e e dx<br />

2π<br />

=<br />

a<br />

2 2<br />

σ +∞ x<br />

− T σ Tx−<br />

0 2 2<br />

S e ∫ e dx<br />

2π a<br />

( x−σ<br />

T)<br />

⎛<br />

⎞<br />

e exp dx<br />

2 2<br />

⎛ ⎞<br />

r− T<br />

2<br />

S<br />

σ +∞<br />

⎜<br />

0 2 ⎟<br />

⎝ ⎠<br />

σ T<br />

=<br />

⎜<br />

⎟<br />

∫ − +<br />

2π a<br />

2 2<br />

⎜ ⎟<br />

Let y= x−σ T then<br />

⎝<br />

2 2<br />

σ T +∞ y<br />

−<br />

0 2 2<br />

S<br />

I1<br />

= e ∫ e dy<br />

2π a−σ<br />

T<br />

( ( ))<br />

( ( ))<br />

= −Φ −σ<br />

rT<br />

Se<br />

0<br />

1 a T<br />

= − −σ<br />

For I<br />

2<br />

,<br />

rT<br />

Se<br />

0<br />

N a T<br />

2<br />

+∞ x<br />

rT K −<br />

−<br />

2<br />

I2<br />

=−e ∫ e dx<br />

2π ( ( ))( )<br />

−rT<br />

( a)<br />

= −Φ −<br />

−rT<br />

e 1 a K<br />

=−Ke<br />

Φ −<br />

a<br />

B. Basic Model<br />

The basic notion follows [12]. Consider a portfolio<br />

X = x x x ′ of stocks1, 2<br />

n<br />

consist<strong>in</strong>g of quantities ( )<br />

1, 2 n<br />

with the return vector R= ( r1, r2 r<br />

n )<br />

′ . We assume that for<br />

each stock there are m put and m call options that mature<br />

<strong>in</strong> one year. The m strike prices of the put and call<br />

options for one particular stock are located at equidistant<br />

po<strong>in</strong>ts between 70% and 130% of the stock's current<br />

price. C<br />

R , R are denoted the correspond<strong>in</strong>g calls and<br />

ik<br />

Pik<br />

puts returns <strong>in</strong> the portfolio with stock price<br />

S , k = 1, 2m<br />

means the k -th strike price based on the<br />

i<br />

th<br />

i stock,call price C ik<br />

, and put price P ik<br />

, whose exercise<br />

⎠<br />

⎠<br />

prices are K ik<br />

, β and<br />

ik<br />

γ denote the (decision) variables on<br />

ik<br />

the numbers of the correspond<strong>in</strong>g calls and puts option.<br />

0<br />

S denotes the <strong>in</strong>itial price of stock ,which then can be<br />

i<br />

expressed as S 0 ir at the end of the period. Us<strong>in</strong>g the<br />

i<br />

payoff functions of call and put options, we can explicitly<br />

express the returns of options as:<br />

C 1 0<br />

R<br />

ik<br />

= max { 0, Si ri − Kik} = max { 0, aik + bikri<br />

}<br />

Cik<br />

with<br />

K S<br />

ik<br />

0<br />

aik<br />

=− , bik<br />

=<br />

P C<br />

ik<br />

ik<br />

Similarly, the return of a put option is<br />

P 1 0<br />

R<br />

ik<br />

= max { 0,<br />

i<br />

Kik − Si ri<br />

}<br />

Pik<br />

= max{ 0, aik<br />

+ bikri<br />

}<br />

S K<br />

with<br />

0<br />

ik<br />

aik<br />

=− , bik<br />

=<br />

Pik<br />

Pik<br />

where P<br />

ik<br />

, C will be calculated from Black–Scholes<br />

ik<br />

formula.<br />

With<strong>in</strong> this <strong>in</strong>vestment framework, the value a<br />

portfolio at the expired time the <strong>in</strong>vestor wishes to<br />

maximize can thus be formulated as:<br />

n<br />

m<br />

⎧<br />

C P⎫<br />

maxV = ∑⎨xr i i<br />

+ ∑ βik Rik + γik Rik<br />

⎬<br />

i= 1 ⎩ k=<br />

1<br />

⎭<br />

Constra<strong>in</strong>s concluded <strong>in</strong> this paper will be developed<br />

based on [13], whose model also conta<strong>in</strong>ed <strong>in</strong> optioned<br />

portfolio. The risk-return preferences of the <strong>in</strong>vestor are<br />

specified as mean–variance efficiency with additional<br />

shortfall constra<strong>in</strong>ts express<strong>in</strong>g the downside risk<br />

preferences.<br />

−1<br />

( I − L) wxβγ<br />

= C r and<br />

a<br />

QV ( ≥ Bα ( )) ≥1−<br />

α<br />

where the mean<strong>in</strong>gs of the parameters are expla<strong>in</strong>ed<br />

as: w βγ<br />

is the share vector of stocks, call options and put<br />

x<br />

− 1<br />

options. Set L = C rr′<br />

and I be<strong>in</strong>g the matrix with 1 <strong>in</strong> the<br />

c<br />

diagonal and 0 else. Let C be the covariance matrix of<br />

the (discrete) returns, r ( r1, r2<br />

rp<br />

)<br />

= the vector of<br />

expected returns and e the p -dimensional vector filled<br />

with 1 <strong>in</strong> each component of the <strong>in</strong>struments.<br />

The steps of calculat<strong>in</strong>g the parameters are follows:<br />

(1) Covariance matrix of the (discrete) returns C is<br />

estimated from history data.<br />

r = r r r is also<br />

(2) Expected returns vector ( 1, 2 p )<br />

estimated from history data.<br />

(3) a = eC ′ − r, b= rC ′ − r, c= eC ′<br />

− e,<br />

d = bc−<br />

a<br />

⎛b−<br />

ari<br />

⎞ ⎛crj<br />

− a ⎞<br />

ra<br />

= ⎜ ⎟ , rc<br />

= ⎜ ⎟<br />

⎝ d ⎠i=<br />

1,2<br />

p ⎝ d ⎠j=<br />

1,2<br />

p<br />

−1<br />

(4) ( )<br />

1 1 1 2<br />

I − L w = C r<br />

xβγ<br />

a<br />

The follow<strong>in</strong>g portfolio optimization problem<br />

corresponds to this model:<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!