25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1501<br />

g ( x + d + d ) = g ( x + d ) +∇ g ( x + d ) d + O(|| d<br />

|| )<br />

k k k k k k k T k k 2<br />

j j j<br />

k k k T k k<br />

gj<br />

x + d +∇ gj<br />

x d + O d<br />

k<br />

d k<br />

+ O d<br />

2<br />

k k k T k k<br />

gj<br />

x + d +∇ gj<br />

x d<br />

+ O d<br />

k<br />

d<br />

= ( ) ( ) (|| |||| ||) (|| || )<br />

= ( ) ( ) (|| |||| ||).<br />

In addition, from (9) and (10),<br />

k T k k T k<br />

∇ g<br />

j<br />

( x ) d =∇g j( x ) d0<br />

− δ<br />

k,<br />

k T<br />

k<br />

( ) <br />

k τ<br />

k k<br />

∇ g<br />

j<br />

x d = −|| d0<br />

|| − g<br />

j( x + d )<br />

k k T k<br />

+ g<br />

j( x ) +∇g j( x ) d ,<br />

so, for τ ∈ (2,3) we have<br />

k k k<br />

gj<br />

( x + d + d<br />

)<br />

= − || d || + g ( x ) +∇g ( x ) d − δ + O(|| d |||| d<br />

||)<br />

k τ k k T k k k<br />

0 j j 0 k<br />

k τ<br />

k k<br />

0<br />

(21)<br />

≤− || d || + O(|| d |||| d ||) ≤0.<br />

Hence, the second <strong>in</strong>equalities of (20) hold for t = 1<br />

and k is sufficiently large.<br />

The next objective is to show the first <strong>in</strong>equality of (19)<br />

holds. From Taylor expansion and tak<strong>in</strong>g <strong>in</strong>to account<br />

Lemma 4.1 and Lemma 4.3, we have<br />

k k k k k T k<br />

s f( x + d + d<br />

) − f( x ) + α∇f( x ) d<br />

k T k k 1 k T 2 k T k<br />

= ∇ f ( x ) ( d + d ) + ( d ) ∇ f( x ) d (22)<br />

2<br />

k T k k 2<br />

−α∇ f( x ) d + o(|| d || ).<br />

On the other hand, from the KKT condition of (8) and<br />

the active set L<br />

k<br />

def<strong>in</strong>ed by Lemma 4.3 one has<br />

∑<br />

∇ f( x ) =−H d − u ∇g ( x )<br />

k k k k<br />

k 0<br />

j j<br />

j∈Lk<br />

k k k k 2<br />

=−Hd k<br />

−∑<br />

uj∇ g<br />

j( x) + o(|| d || ),<br />

j∈Lk<br />

So, from (23) and Lemma 4.3, we have<br />

∇f( x ) d<br />

k T k<br />

∑<br />

k T k k k T k<br />

( d ) Hkd uj g<br />

j( x ) d<br />

k 2<br />

o(|| d || )<br />

j∈Lk<br />

k<br />

d<br />

T k k k T k<br />

Hkd ∑ uj g<br />

j<br />

x d0<br />

o<br />

k<br />

d<br />

2<br />

j∈Lk<br />

=− − ∇ +<br />

= −( ) − ∇ ( ) + (|| || )<br />

k T k<br />

k<br />

∇ f( x ) ( d + d<br />

)<br />

∑<br />

k T k k k T k<br />

k<br />

k 2<br />

k j j<br />

j∈Lk<br />

=−( d ) H d − u ∇ g ( x ) ( d + d ) + o(|| d || ),<br />

Aga<strong>in</strong>, from (21) and Taylor expansion, it is clear that<br />

k 2<br />

k k k<br />

o(|| d || ) = gj( x + d + d<br />

)<br />

1<br />

g x +∇ g x d + d<br />

+ d ∇ g x d + o d<br />

2<br />

where j∈<br />

L , then, we obta<strong>in</strong><br />

(23)<br />

(24)<br />

(25)<br />

k k T k k k T 2 k T k k 2<br />

=<br />

j( )<br />

j( ) ( ) ( )<br />

j( ) (|| || )<br />

k<br />

∑<br />

k k T k<br />

k<br />

− u ∇ g ( x ) ( d + d<br />

)<br />

j j<br />

j∈Lk<br />

k k T<br />

∑ uj<br />

g<br />

j( x )<br />

j∈Lk<br />

1 ⎛ ( )<br />

2 T ⎞<br />

k T k (<br />

k )<br />

k (||<br />

k ||<br />

2<br />

+ d uj<br />

g<br />

j<br />

x d o d ),<br />

2 ⎜∑<br />

∇ ⎟<br />

+<br />

j∈Lk<br />

= ∇<br />

From (25) and (26), we have<br />

⎝<br />

k T k<br />

k<br />

∇ f( x ) ( d + d<br />

)<br />

k T k k k<br />

=−( d ) H d − u ∇g ( x )<br />

1<br />

k j j<br />

j∈Lk<br />

⎛<br />

k T k 2 k T k k 2<br />

+ ( d ) j j( ) (|| || )<br />

2 ⎜<br />

u ∇ g x ⎟<br />

d + o d<br />

j∈Lk<br />

⎝<br />

∑<br />

∑<br />

Substitut<strong>in</strong>g (27) and (24) <strong>in</strong>to (22), it holds that<br />

1 k T k k k<br />

s ( α − )( d ) Hkd + (1 −α) ∑ ujg j( x )<br />

2<br />

1 ⎛<br />

⎞<br />

2<br />

⎜ ∑<br />

⎟<br />

⎝<br />

j∈Lk<br />

⎠<br />

1 k T k k k<br />

=( α − )( d ) Hkd + (1 −α) ∑ ujg j( x )<br />

2<br />

⎠<br />

⎞<br />

⎠<br />

j∈Lk<br />

(26)<br />

(27)<br />

+<br />

k T<br />

( d )<br />

T<br />

2 k k 2 k<br />

k k 2<br />

∇ f ( x ) + u ∇ g ( x ) − H d + o(|| d || )<br />

j j k<br />

j∈Lk<br />

1 k T 2 k k k k 2<br />

+ ( d ) ( ∇ L( x , uJ<br />

) − H ) (|| || ).<br />

k k<br />

d + o d<br />

2<br />

Then, together assumption H 3.1 and H 4.2 as well as<br />

k k<br />

ug( x) ≤ 0, shows that<br />

j<br />

j<br />

1 1<br />

s ≤ α − a d + o d ≤ α∈<br />

2 2<br />

Hence, the <strong>in</strong>equality of (19) holds.<br />

k 2 k 2<br />

( ) || || (|| || ) 0. ( (0, )).<br />

Furthermore, <strong>in</strong> a way similar to the proof of Theorem<br />

5.2 <strong>in</strong> [5] and <strong>in</strong> [19, Theorem 2.3], we may obta<strong>in</strong> the<br />

follow<strong>in</strong>g theorem:<br />

Theorem 4.5 Under all above-mentioned assumptions,<br />

the algorithm is superl<strong>in</strong>early convergent, i.e., the<br />

sequence { x k } generated by the algorithm satisfies that<br />

1 * *<br />

|| k<br />

k<br />

x + − x || = o(|| x − x ||).<br />

Proof.<br />

From Lemma 4.1 and Lemma 4.4, we can know that<br />

the sequence { x<br />

k } yielded by Algorithm A has the form<br />

of<br />

k 1 k k<br />

k<br />

x + = x + d + d<br />

k k k<br />

k<br />

k<br />

= x + d0 + ( d + d −d0)<br />

k<br />

k k<br />

x + d + d<br />

.<br />

0<br />

k<br />

where k<br />

k<br />

( k<br />

d = d + d − d ) (for k large enough) and<br />

k<br />

k 3<br />

d O d0<br />

0<br />

|| || = (|| || ) . Consequently, we can obta<strong>in</strong> the<br />

result together with Ref. [5] and [19].<br />

V. NUMERICAL RESULTS<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!