25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1443<br />

M = δ 2 [ 2 1 1 2<br />

∨ ]<br />

(9)<br />

M = δ 2 [ 2 1 1 1<br />

↑<br />

]<br />

(10)<br />

M = δ 2 [ 2 2 2 1<br />

↓<br />

]<br />

(11)<br />

n k<br />

Theorem 2: Let F( x1<br />

, , xn<br />

): D → D be a logical<br />

mapp<strong>in</strong>g: F : Δ n →Δ k .Then there exists a unique<br />

2 2<br />

k n called the structure matrix of F , such <strong>in</strong><br />

∈L<br />

M<br />

F 2 × 2<br />

(12).<br />

F( x , , x ) = M × x<br />

(12)<br />

1<br />

C. Dynamics of Boolean Networks<br />

The Boolean networks play an important role <strong>in</strong><br />

model<strong>in</strong>g cell regulation, because they can represent<br />

important features of liv<strong>in</strong>g organisms. The dynamics of<br />

the Boolean networks will be given <strong>in</strong> this section.<br />

Def<strong>in</strong>ition 2[15][18][20]: A Boolean network is a set<br />

of nodes A , A , 1 2<br />

, An<br />

, which <strong>in</strong>teract with each other<br />

<strong>in</strong> a synchronous manner. At each given time t=0, 1, 2, …,<br />

a node has only one of two different values: 1 or 0. Thus<br />

the network can be described by a set of equations as <strong>in</strong><br />

(13).<br />

⎧ A1( t+ 1) = f1( A1( t), A2( t), , An<br />

( t))<br />

⎪A2( t+ 1) = f2( A1( t), A2( t), , An<br />

( t))<br />

⎨<br />

(13)<br />

⎪<br />

<br />

⎪<br />

⎩An( t+ 1) = fn( A1( t), A2( t), , An( t))<br />

Where<br />

i<br />

n<br />

f , ( i = 1,2, , n)<br />

, are n-ary logic functions.<br />

Note that <strong>in</strong> Boolean networks each function f i<br />

has<br />

only constant, l<strong>in</strong>ear, or product terms [12].<br />

F<br />

Example 3: Consider a Boolean network which<br />

dynamics is described as <strong>in</strong> (15).<br />

⎧ A1( t + 1) = A2( t) ∧ A3( t) ∧ A1( t)<br />

⎪<br />

⎨A2( t + 1) = ( A1() t ∧ A2()) t ∨( A1() t ∧ A3() t ∧ A2())<br />

t<br />

⎪<br />

⎪⎩<br />

A3( t + 1) = ( A1() t ∧ A2() t ∧ A3()) t ∨( A2() t ∧ A3())<br />

t<br />

(15)<br />

In algebraic form (the notation " × " is omitted), we can<br />

have as <strong>in</strong> (16).<br />

⎧A1( t+ 1) = M∧( M A2() t A3()) t A1()<br />

t<br />

↑<br />

⎪<br />

⎪A2( t+ 1) = M∨(( M∧ A1( t)( M¬<br />

A2( t))<br />

⎪ ( M<br />

∧( M A1() t A3()) t A2()))<br />

t<br />

↓<br />

⎨<br />

⎪A3( t+ 1) = M∨(( M∧( M∧A1() t A2())<br />

t<br />

⎪ ( M<br />

¬<br />

A3( t)))( M∧ ( M¬<br />

A2( t))<br />

⎪<br />

⎪⎩ A3<br />

()) t<br />

(16)<br />

There are some propositions <strong>in</strong> [15][18] to calculate the<br />

structure matrix L.<br />

t<br />

Proposition 1: Let Z ∈ R be a column. Then there exists <strong>in</strong><br />

(17).<br />

ZA= ( I ⊗ A)<br />

Z<br />

(17)<br />

Proposition 2: There exists an unique matrix<br />

W ∈ M ×<br />

, called the swap matrix, such that for any<br />

[ mn , ]<br />

mn mn<br />

two column vectors . X ∈ R<br />

m<br />

t<br />

n<br />

. and Y ∈ R .<br />

W[ mn , ]<br />

XY = YX<br />

(18)<br />

We refer to [15][18] for construct<strong>in</strong>g swap matrix.<br />

Proposition 3: Let X . Then we have (19).<br />

X<br />

2<br />

∈ Δ<br />

= M X ,<br />

r<br />

M r<br />

⎡1 0⎤<br />

⎢<br />

0 0<br />

⎥<br />

= ⎢ ⎥<br />

⎢ 0 0 ⎥<br />

⎢ ⎥<br />

⎣0 1⎦<br />

(19)<br />

III. CONVENTIONAL CALCULATION OF STRUCTURE<br />

MATRIX<br />

Us<strong>in</strong>g Theorem 1 and 2, the dynamics of Boolean<br />

networks can be expressed as <strong>in</strong> (14).<br />

A( t+ 1) = LA( t)<br />

(14)<br />

l<br />

l<br />

where At ( + 1) =×<br />

i=<br />

1<br />

Ai( t+ 1) , A( t)<br />

= × i= 1<br />

Ai<br />

( t)<br />

, L is the<br />

structure matrix of F , L l l ∈L . 2 × 2<br />

By means of the STP, the dynamics of Boolean<br />

networks can be converted <strong>in</strong>to the equivalent algebraic<br />

forms. Through the analysis of the structure matrix L ,<br />

we can get the characteristics of the Boolean networks<br />

such as: (1) fixed po<strong>in</strong>ts; (2) circles of different lengths;<br />

(3) transient period; (4) bas<strong>in</strong> of each attractor[15][18].<br />

Therefore, how to get the structure matrix L easily is<br />

very important. The conventional method to get the<br />

structure matrix L is as follows.<br />

Firstly, a simple example is given to show the structure<br />

of a Boolean network.<br />

Where<br />

M<br />

r<br />

is the power-reduc<strong>in</strong>g matrix.<br />

L = M∨M∧M∧ ( I2 ⊗( I2 ⊗M¬<br />

( I2<br />

⊗<br />

M∧ M¬ ( I2 ⊗( I2 ⊗M∨M∧ ( I2<br />

⊗M¬<br />

( I2 ⊗M∧M ( I2 ⊗( I2 ⊗(<br />

I2<br />

⊗M<br />

↓ ↓<br />

M∧)))))))))) W[2] ( I2 ⊗W[2] )( I4 ⊗W[2]<br />

)<br />

( I8 ⊗W[2] )( I32 ⊗W[2] )( I128 ⊗W[2]<br />

)<br />

( I256 ⊗W[2] )( I512 ⊗W[2] )( I1024 ⊗W[2]<br />

)<br />

W[2] ( I4 ⊗W[2] )( I16 ⊗W[2] )( I64 ⊗W[2]<br />

)<br />

( I1<br />

28<br />

⊗W[2] )( I256 ⊗W[2] )( I512 ⊗W[2]<br />

)<br />

( I2 ⊗W[2] )( I32 ⊗W[2] )( I64 ⊗W[2]<br />

)<br />

( I128 ⊗W[2] )( I256 ⊗W[2] )( I16 ⊗W[2]<br />

)<br />

( I128 ⊗W[2] )( I8 ⊗W[2] )( I64 ⊗W[2]<br />

)<br />

( I4 ⊗W[2] )( I32 ⊗W[2] )( I16 ⊗W[2]<br />

)<br />

( I8 ⊗W[2] ) MMM<br />

r r r( I2<br />

⊗(<br />

MM<br />

r r<br />

MM( I ⊗ MMM))<br />

r r 2 r r r<br />

(20)<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!