25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1531<br />

and hence<br />

Δ γ 1 γ<br />

t ( α( sy ) ( s)) )<br />

y() t − y( δ ()) t = ∫<br />

Δs<br />

δ () t<br />

1 γ<br />

α () s<br />

≤<br />

t y t<br />

Δs<br />

α () s<br />

Δ<br />

γ 1 γ t<br />

( αδ ( ( ))( ( δ( ))) ) ∫ ,<br />

δ () t 1 γ<br />

Δ<br />

γ 1 γ<br />

yt () ( αδ ( ())( t y ( δ())))<br />

t t Δs<br />

≤ 1+ ∫ . (17)<br />

δ () t 1 γ<br />

y( δ( t)) y( δ( t)) α ( s)<br />

Also, for t ≥ t , we can see that<br />

3<br />

≥<br />

1 γ<br />

Δ γ<br />

δ () t<br />

y( δ( t)) > y( δ( t)) − y( t ) = s<br />

2 ∫<br />

Δ<br />

t2<br />

1 γ<br />

Δs<br />

α () s<br />

1 γ<br />

Δ<br />

γ δ () t<br />

( αδ ( ( t))( y ( δ( t))) ) ∫ ,<br />

t2<br />

1 γ<br />

and therefore<br />

( αδ ( ( ))( ( δ( ))) )<br />

( α( sy ) ( s)) )<br />

α () s<br />

1 γ<br />

Δ<br />

γ<br />

t y t δ () t s<br />

≤ ⎜∫t2<br />

1 γ<br />

y( δ( t)) α ( s)<br />

From (17) and the above <strong>in</strong>equality, we have<br />

⎛<br />

⎝<br />

Δ<br />

⎞<br />

⎟<br />

⎠<br />

−1<br />

yt () t Δs δ () t Δs<br />

−1<br />

≤ ∫ ( )<br />

t2 1 γ ∫ , (18)<br />

t2<br />

1 γ<br />

y( δ( t)) α ( s) α ( s)<br />

therefore we get the desired <strong>in</strong>equality<br />

y( δ ( t))<br />

≥ ρ(, tt),<br />

for t ≥ t . (19)<br />

2<br />

3<br />

yt ()<br />

Us<strong>in</strong>g (19) <strong>in</strong> (15), when δ () t ≤ t, we get<br />

Δ<br />

Δ<br />

γ<br />

g () t σ<br />

w () t ≤− ρ (, t t ) g() t Q() t + w () t<br />

2<br />

σ<br />

g () t<br />

σ γ Δ<br />

gtw () ()( t y()) t<br />

−<br />

σ<br />

γ .<br />

g () t y () t<br />

From (16), (20) and the def<strong>in</strong>ition of β (, tt)<br />

, we have<br />

2<br />

By (8), we obta<strong>in</strong><br />

Δ<br />

Δ<br />

g () t σ<br />

w () t ≤− β (, t t ) g() t Q() t + w () t<br />

2<br />

σ<br />

g () t<br />

σ γ Δ<br />

gtw () ()( t y()) t<br />

−<br />

σ<br />

γ .<br />

g () t y () t<br />

y t γ hy h y dh y t<br />

γ Δ 1 σ γ−1<br />

Δ<br />

( ( )) = ∫ [ + (1 − ) ] ( )<br />

0<br />

σ γ−1<br />

Δ<br />

⎧γ( y ( t)) y ( t),0< γ ≤1,<br />

≥ ⎨<br />

⎩γ<br />

yt y t γ ≥<br />

γ −1<br />

Δ<br />

( ( )) ( ), 1.<br />

S<strong>in</strong>ce α( y<br />

Δ )<br />

γ<br />

is strictly decreas<strong>in</strong>g on[ t 2<br />

, ∞ ), we get<br />

γ<br />

( y ( t))<br />

Δ<br />

⎧γα<br />

t y t y t<br />

⎪ α () t<br />

≥ ⎨<br />

⎪ γα t y t y t<br />

⎪<br />

⎩ α () t<br />

(<br />

σ 1 γ<br />

( )) (<br />

σ γ−1<br />

( )) (<br />

Δ σ<br />

( ))<br />

1 γ<br />

(<br />

σ 1 γ γ−1<br />

( )) ( ( )) (<br />

Δ σ<br />

( ))<br />

1 γ<br />

.<br />

,0< γ ≤1,<br />

, γ ≥ 1.<br />

(20)<br />

(21)<br />

From the last <strong>in</strong>equality and (21), if 0< γ ≤ 1, we have<br />

Δ<br />

Δ<br />

g () t σ<br />

w () t ≤ − β (, t t ) g() t Q() t + w () t −<br />

2<br />

σ<br />

g () t<br />

σ 11 + γ σ<br />

γ gt ()( w()) t ⎛ y () t ⎞<br />

1 γ σ 1+<br />

1 γ ⎜ ⎟<br />

α ()( t g ()) t ⎝ y()<br />

t ⎠<br />

whereas if γ > 1 , we f<strong>in</strong>d that<br />

Δ<br />

Δ<br />

g () t σ<br />

w () t ≤− β (, t t ) g() t Q() t + w () t<br />

2<br />

σ<br />

g () t<br />

γ gt w t y t<br />

−<br />

α ()( t g ()) t y()<br />

t<br />

σ 11 + γ σ<br />

()( ()) ()<br />

1 γ σ 1+<br />

1 γ .<br />

Δ<br />

And by us<strong>in</strong>g y () t > 0, we obta<strong>in</strong> that<br />

Δ<br />

Δ<br />

g () t<br />

+ σ<br />

w () t ≤− β (, t t ) g() t Q() t + w () t<br />

2<br />

σ<br />

g () t<br />

γ gt ()<br />

−<br />

α ()( t g ()) t<br />

1 γ σ λ<br />

γ<br />

,<br />

σ λ<br />

( w ( t)) ,<br />

where λ : = ( γ + 1) γ . Def<strong>in</strong>e A ≥ 0 and B ≥ 0<br />

by<br />

σ λ<br />

1( γ +1) Δ<br />

λ γ gt ()( w())<br />

t<br />

λ− 1<br />

α ()( t g ()) t<br />

+<br />

A : = , B : = ,<br />

1 γ σ λ 1 λ<br />

α ( t)( g ( t)) λ( γg( t))<br />

then us<strong>in</strong>g Lemma 1, we obta<strong>in</strong><br />

(22)<br />

g<br />

Δ 1<br />

() t ()<br />

()(( ()))<br />

() ( ()) t g Δ t<br />

γ +<br />

σ gt<br />

σ λ α<br />

+<br />

γ<br />

+<br />

w t −<br />

w t ≤<br />

.<br />

σ 1γ σ λ γ+<br />

1 γ<br />

g () t α ()( t g ()) t ( γ + 1) g () t<br />

From the last <strong>in</strong>equality and (22), we have<br />

Δ γ + 1<br />

Δ<br />

α()(( t g ())) t<br />

+<br />

w () t ≤<br />

−β<br />

(, t t ) g() t Q()<br />

t .<br />

γ+<br />

1 γ<br />

2<br />

( γ + 1) g ( t)<br />

Integrat<strong>in</strong>g both sides from t 3<br />

to t, we get<br />

Δ γ + 1<br />

t<br />

α( s)(( g ( s)) )<br />

+<br />

∫ [ β ( s, t ) g( s) Q( s) −<br />

] Δs<br />

t3<br />

2 γ+<br />

1 γ<br />

( γ + 1) g ( s)<br />

≤ wt ( ) −wt ( ) ≤ wt ( ),<br />

3 3<br />

which leads to a contradiction to (10). This completes the<br />

proof.<br />

Corollary 1 Assume that (H1) - (H5) hold, Furthermore,<br />

suppose that for all sufficiently large T ∗ , and for δ ( T ) ><br />

T ∗<br />

,<br />

we have<br />

t<br />

∗ α()<br />

s<br />

limsup ∫ ( sβ<br />

( s, T ) Q( s) − ) Δ s =∞.<br />

t→∞<br />

T<br />

γ+<br />

1 γ<br />

( γ + 1) s<br />

Then every solution of (4) is oscillatory on [ t , ∞)<br />

0 T<br />

.<br />

Corollary 2 Assume that (H1) - (H5) hold, Furthermore,<br />

suppose that for all sufficiently large T ∗ , and for δ ( T ) ><br />

T ∗<br />

,<br />

we have<br />

t<br />

∗<br />

limsup ∫ β ( sT , ) Qs ( ) Δ s=∞.<br />

t→∞<br />

T<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!