25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1529<br />

examples presented <strong>in</strong> [8] to illustrate the ma<strong>in</strong> results are<br />

valid only when T= and cannot be applied when T = .<br />

Agarwal, O′Regan and Saker [3]considered (2) where γ ≥<br />

1 is an odd positive <strong>in</strong>teger and α Δ () t > 0, and established<br />

some new oscillation criteria by employ<strong>in</strong>g the Riccati<br />

transformation technique which can be applied on any<br />

time scale T and improved the results <strong>in</strong> [6, 8].<br />

Bohner and Saker [9] considered perturbed nonl<strong>in</strong>ear<br />

dynadynamic equation<br />

Δ<br />

{ ( t)(( x( t)) ) γ Δ<br />

} F( t, x σ ) G( t, x σ Δ<br />

α<br />

+ = , x ). (3)<br />

on a time scales T . Where γ > 0 is an odd positive<br />

<strong>in</strong>teger, us<strong>in</strong>g Riccati transformation techniques, they<br />

obta<strong>in</strong>ed some sufficient conditions for the solution to be<br />

oscillatory or converge to zero.<br />

Follow<strong>in</strong>g this trend, we shall study the oscillation for<br />

the second-order neutral nonl<strong>in</strong>ear perturbed dynamic<br />

equations of the form<br />

and<br />

Δ γ<br />

{ α( t)(( x( t) + c( t) x( τ( t))) ) }<br />

Δ<br />

+ F( tx , ( δ( t))) = Gtx ( , ( δ( t)), x),<br />

Δ γ<br />

{ α( t)(( x( t) − c( t) x( τ( t))) ) }<br />

Δ<br />

+ F( tx , ( δ( t))) = Gtx ( , ( δ( t)), x).<br />

on an arbitrary time scales T , where γ is a quotient of<br />

positive odd <strong>in</strong>teger, α, c is a positive real-valued rdcont<strong>in</strong>uous<br />

function def<strong>in</strong>ed on a time scales T and the<br />

follow<strong>in</strong>g conditions are satisfied:<br />

+∞<br />

1 γ<br />

(H1) 0 ≤ct<br />

( ) ≤ c < 1,<br />

t ( α( t))<br />

0 ∫ Δ =∞, for all t ∈ T ;<br />

t<br />

0<br />

(H2) τ , δ : T → T satisfies τ () t ≤ t,<br />

for all t ∈ T , either<br />

δ () t ≥ t or δ () t ≤ t for all suffici-ently large t , and<br />

lim τ ( t)<br />

= lim δ ( t)<br />

=∞;<br />

t→∞<br />

t→∞<br />

(H3) pq , : T → are rd-cont<strong>in</strong>uous function, such that<br />

qt () − pt () > 0, for all t ∈ T ;<br />

2<br />

(H4) F : T× →<br />

and G : T× →<br />

are functions<br />

such that uF(, t u ) > 0and uG(, t u, v ) > 0, for all u ∈ −<br />

{0} , v ∈ , t ∈ T ;<br />

(H5) F(, tu) u γ<br />

≥ qt (), and Gtuv (, , ) u γ<br />

≤ pt () for all<br />

uv∈ , −{0}<br />

, t ∈ T .<br />

We note that <strong>in</strong> all the above results the conditions<br />

0 ≤ ct ( ) < 1, γ ≥ 1 and δ () t ≤ t are required. And some<br />

authors utilized the kernel function ( t−<br />

s<br />

) m<br />

Δ<br />

Δ<br />

(4)<br />

(5)<br />

or the general<br />

class of functions H (, ts)<br />

and obta<strong>in</strong>ed some oscillation<br />

Δs<br />

criteria, but the condition H ( ts , ) ≤ 0 is required. In this<br />

paper the study is free of these restrictions and conta<strong>in</strong>s<br />

the cases when 0< γ < 1, δ ( t) ≥t,<br />

and − 1 < ct ( ) ≤ 0 . In<br />

particular, by utiliz<strong>in</strong>g the general class of functions<br />

H (, ts ), we shall derive some sufficient conditions for<br />

the solutions of (4) and (5) to be oscillatory or converge<br />

Δs<br />

to zero when the condition H (, t s) ≤ 0is relaxed. Our<br />

results are different from the exist<strong>in</strong>g results for neutral<br />

equations on time scales that were established <strong>in</strong> [6-11,<br />

13-17]. Also, we give some examples to illustrate the<br />

ma<strong>in</strong> results.<br />

S<strong>in</strong>ce we are <strong>in</strong>terested <strong>in</strong> the oscillatory and asymptotic<br />

behavior of solutions near <strong>in</strong>f<strong>in</strong>ity, we assume that<br />

sup T = ∞ , and def<strong>in</strong>e the time scale <strong>in</strong>terval [ t 0<br />

, ∞)<br />

T<br />

by<br />

[ t , ∞ ) : = [ t , ∞)<br />

∩ T . By a solution of (4), we mean a<br />

0 T 0<br />

nontrivial real-valued function x (t) satisfy<strong>in</strong>g (4)<br />

for t ≥ t . A solution x (t) of (4) is said to be oscillatory if<br />

0<br />

it is neither eventually positive nor eventually negative,<br />

otherwise it is called nonoscillatory. Equation (4) is said<br />

to be oscillatory if all its solutions are oscillatory. Our<br />

attention is restricted to those solutions of (4) which exist<br />

on some half l<strong>in</strong>e[ t 0<br />

, ∞)<br />

and satisfy sup{| xt ( ) |: t≥ t x<br />

} > 0 ,<br />

for any t ≥ t .<br />

x 0<br />

The paper is organized as follows. In next section, we<br />

present some basic formula and lemma concern<strong>in</strong>g the<br />

calculus on time scales. In Section 3, we will use Riccati<br />

transformation techniques and the general class of<br />

functions H (, ts)<br />

and give some sufficient conditions for<br />

the oscillatory behavior of solutions of (4) and (5). In last<br />

section, we give some examples to illustrate our ma<strong>in</strong><br />

results.<br />

Through this paper, we let<br />

γ<br />

d () t = max[0, d()], t Q() t = ( q() t − p())(1 t −c( δ ())), t<br />

+<br />

∫ Δs<br />

α () s<br />

d () t = max[0, − d()], t ρ(, t u): =<br />

,<br />

−<br />

() s<br />

and for sufficiently largeT ∗ ,<br />

δ () t 1 γ<br />

u<br />

t 1 γ<br />

∫ Δs<br />

α<br />

u<br />

1, δ ( t) t,<br />

∗<br />

⎧<br />

≥<br />

β (, tT ) = ⎨ γ ∗<br />

⎩ρ<br />

(, tT ), δ() t ≤ t.<br />

II. SOME PRELIMINARIES ON TIME SCALES<br />

A time scales T is an arbitrary nonempty closed subset<br />

of the real numbers . In this paper, we only consider<br />

time scales <strong>in</strong>terval of form [ t 0<br />

, ∞)<br />

T<br />

, on T we def<strong>in</strong>e the<br />

forward jump operatorσ and the gra<strong>in</strong><strong>in</strong>ess μ by<br />

{ }<br />

σ (): t = <strong>in</strong>f s∈ T : s > t and μ(): t = σ () t − t.<br />

A po<strong>in</strong>t t ∈ T with σ () t = tis called right-dense, while t<br />

is referred to as be<strong>in</strong>g right-scattered if σ () t > t . A<br />

function f : T → is said to be rd-cont<strong>in</strong>uous if it is<br />

cont<strong>in</strong>u-ous at each right-dense po<strong>in</strong>t and if there exists a<br />

left limit <strong>in</strong> all left-dense po<strong>in</strong>ts. The ( Δ derivative) f Δ of<br />

f is def<strong>in</strong>ed by<br />

Δ f ( σ ( t)) − f( s)<br />

f () t = lim , where Ut () = T \{ σ ()} t .<br />

σ () t − s<br />

s→t<br />

sU ∈ () t<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!