25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1489<br />

system is given. In Section VI, simulation results are<br />

presented to confirm the effectiveness and applicability of<br />

the proposed method. F<strong>in</strong>ally, conclusions are <strong>in</strong>cluded.<br />

A. Notations and Prelim<strong>in</strong>aries<br />

The follow<strong>in</strong>g notations and def<strong>in</strong>itions will<br />

extensively be used throughout the paper. Let be the<br />

real number, n<br />

n×<br />

m<br />

and represent the real n-vectors<br />

and the real n× m matrices, respectively. i denotes the<br />

usual Euclidean norm of a vector. In the case where y is<br />

a scalar, y denotes its absolute value and if Y is a<br />

matrix, Y means Frobenious norm def<strong>in</strong>ed as<br />

Y<br />

T<br />

{ }<br />

= tr Y Y .where tr{ i}<br />

stands for trace operator.<br />

Implicit Function Theorem: Assume that<br />

n m n<br />

h : × → is cont<strong>in</strong>uously differentiable at each<br />

n m<br />

ab of an open set S ⊂ × a , b be a<br />

po<strong>in</strong>t ( , )<br />

. Let ( 0 0)<br />

po<strong>in</strong>t <strong>in</strong> S for which ( , )<br />

h a b and for which the<br />

0 0<br />

Jacobian matrix ⎡∂h<br />

⎤( a , b )<br />

⎣<br />

∂a⎦<br />

0 0<br />

is nons<strong>in</strong>gular. Then<br />

n<br />

m<br />

there exist neighborhoods U ⊂ of a0<br />

and V ⊂ of<br />

b0<br />

such that for each b∈V<br />

the equation h( a, b ) = 0has a<br />

unique solution a∈<br />

U . Moreover, the solution can be<br />

given as a = g( b)<br />

where g is cont<strong>in</strong>uously differentiable<br />

at b= b0<br />

.<br />

II. PROBLEM FORMALATION<br />

Consider the follow<strong>in</strong>g SISO nonaff<strong>in</strong>e nonl<strong>in</strong>ear<br />

system [8]:<br />

where [ ]<br />

⎧ dξi<br />

⎪ = ξi+<br />

1<br />

i =1, , r−1<br />

dt<br />

⎪<br />

dξr<br />

⎪ = h( ξη , , u)<br />

⎨ dt<br />

⎪ dη<br />

⎪ = q(, ξη, u)<br />

⎪ dt<br />

⎪ ⎩ y = ξ1<br />

, ,<br />

T r<br />

ξ = ξ1 ξ r<br />

∈ Rξ<br />

⊂ ,<br />

(1)<br />

n−r<br />

η∈R η<br />

⊂ are<br />

system states and u ∈Ωu<br />

⊂ , y ∈ are system <strong>in</strong>put<br />

and output respectively. h(, ξη, u)<br />

is a smooth partially<br />

known function, and q(, ξη , u)<br />

is a smooth partially<br />

known vector field.<br />

The control objective is to design an adaptive neural<br />

network controller for a class of SISO nonaff<strong>in</strong>e<br />

nonl<strong>in</strong>ear systems (1) such that the system output follows<br />

a desired trajectory while all signals <strong>in</strong> the closed-loop<br />

system rema<strong>in</strong> bounded.<br />

∂h(, ξη, u)<br />

Assumption 1: The function hu<br />

(, ξη , u)<br />

=<br />

∂u<br />

is nonzero and bounded for all (, ξη, u) ∈ × ×<br />

R<br />

R<br />

.<br />

This implies that h (, ξη , u)<br />

is strictly either positive or<br />

u<br />

ξ<br />

η<br />

negative for all ( ξη , , u) ∈ × ×<br />

R<br />

R<br />

.Without loss of<br />

generality, it is assumed that it exists a constant c such<br />

that hu<br />

(, ξη , u) ≥ c > 0.<br />

Def<strong>in</strong>e the reference vector<br />

( r−1)<br />

T r<br />

y = ( y y y ) ∈R<br />

ξ<br />

d d d d<br />

The reference signal y d<br />

and its time derivative are<br />

assumed to be smooth and bounded. We also def<strong>in</strong>e the<br />

track<strong>in</strong>g error as<br />

e= yd<br />

− y<br />

and correspond<strong>in</strong>g error vector as<br />

( r−1)<br />

T r<br />

e = (,, e e e ) ∈ R .<br />

Assumption 2: When the desired output y d<br />

and its r-<br />

order derivative are of known bound, there exists a<br />

positive constant bd<br />

to satisfy<br />

(1) ( r−1)<br />

T<br />

( yd yd yd ) ≤ bd<br />

Then the error equation is as follows:<br />

η<br />

(2)<br />

( r)<br />

e = A0 e + b⎡<br />

⎣yd<br />

−h(, ξη, u)<br />

⎤<br />

⎦ (3)<br />

⎡ 0 1 0 0⎤<br />

⎡0⎤<br />

⎢<br />

0 0 1 0<br />

⎥<br />

⎢<br />

<br />

⎢<br />

⎥<br />

0<br />

⎥<br />

⎢ ⎥<br />

where A0<br />

= ⎢ ⎥<br />

, b = ⎢0⎥<br />

.<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ 0 0 0 1⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎣ 0 0 0 0 0⎥<br />

⎦<br />

⎢<br />

r × r ⎣1⎥<br />

⎦ r × 1<br />

A b is controllable, then there will exist a<br />

Obviously, ( , 0 )<br />

constant matrix [ , , ]<br />

T<br />

0 1 r 1<br />

T<br />

c<br />

K = k k k −<br />

which makes<br />

eigenvalues of matrix A = A0<br />

− bK all have negative<br />

real part. Thus, for any given positive def<strong>in</strong>ite symmetric<br />

matrix Q , there exists a unique positive def<strong>in</strong>ite<br />

symmetric solution P to the follow<strong>in</strong>g Lyapunov<br />

algebraic equation:<br />

A P+ PA = − Q<br />

(4)<br />

T<br />

c<br />

Def<strong>in</strong>e a signal<br />

T<br />

( r)<br />

T<br />

⎛b Pe ⎞<br />

ν= yd<br />

+ K e + λtanh⎜ ⎟<br />

⎝ Ξ ⎠<br />

where tanh( •) ∈− ( 1,1) is the hyperbolic tangent function,<br />

Ξ,λ<br />

are the positive design parameters, when error<br />

T<br />

⎛bPe⎞ e →+<br />

∞ , the value of tanh ⎜ ⎟ → + ∞ , and when<br />

⎝ Ξ ⎠<br />

T<br />

⎛b Pe ⎞<br />

error e →-∞ the value of tanh ⎜ ⎟ → - ∞ .<br />

⎝ Ξ ⎠<br />

T<br />

⎛b Pe ⎞<br />

When e → 0 , tanh ⎜ ⎟ → 0 .The term<br />

⎝ Ξ ⎠<br />

T<br />

⎛b Pe ⎞<br />

λ tanh ⎜ ⎟ is a smooth approximation of the<br />

⎝ Ξ ⎠<br />

T<br />

discont<strong>in</strong>uous term sign( b Pe )<br />

c<br />

λ usually used <strong>in</strong> robust<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!