25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1532 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

Then every solution of (4) is oscillatory on [ t , ∞)<br />

0 T<br />

.<br />

We next study a Philos-type oscillation criteria for (4).<br />

First, Let us <strong>in</strong>troduce the class of functions R which<br />

will be extensively used <strong>in</strong> the sequel.<br />

2<br />

Let D= {( ts , ) ∈T : t≥ s≥t}<br />

.The function H ∈ Crd<br />

( D, )<br />

is said to belong to the class R by H ∈R, if<br />

H (,) tt 0, t t<br />

0<br />

= ≥ ; H (, ts) 0, t s t<br />

0<br />

0<br />

> > ≥ , (23)<br />

Δs<br />

and H has a cont<strong>in</strong>uous Δ− partial derivative H (, ts)<br />

with respect to the second variable.<br />

Theorem 2 Assume that (H1) - (H5) hold. Let g (t) be<br />

as def<strong>in</strong>ed <strong>in</strong> Theorem 1, and Hh , ∈C rd<br />

( D, )<br />

such that<br />

H ∈R. Furthermore, suppose that there exists a positive<br />

rd-cont<strong>in</strong>uous function ϕ()<br />

t satisfies<br />

Hts (, )<br />

≤ ϕ()<br />

s , (24)<br />

Htt (, )<br />

0<br />

Δ<br />

Δ g () s h(,)<br />

t s<br />

s γ ( γ+<br />

1)<br />

−H (, t s) − H(, t s) = ( H(, t s))<br />

, (25)<br />

σ<br />

σ<br />

g () s g () s<br />

and for all sufficiently largeT ∗ , we have<br />

1 t<br />

∗<br />

limsup ∫ [ β (, s T ) g() s Q() s H(,)<br />

t s<br />

t→∞<br />

t0<br />

Htt (, )<br />

0<br />

α()( s h (,)) t s<br />

− ] Δ s =∞.<br />

γ + 1<br />

−<br />

γ+<br />

1 γ<br />

( γ + 1) g ( s)<br />

(26)<br />

Then every solution of (4) is oscillatory on [ t , ∞)<br />

0 T<br />

.<br />

Proof Suppose (4) has a nonoscillatory solution x (t),<br />

without loss of generality, say xt () > 0, x( τ ( t)) > 0,<br />

x( δ ( t)) > 0, for all t ≥ t , for some t<br />

1<br />

1<br />

≥ t 0<br />

. By (H2) - (H5),<br />

proceed as <strong>in</strong> the proof of Theorem 1, we get that (11)<br />

holds for all t ≥ t . Aga<strong>in</strong> we def<strong>in</strong>e wt () as <strong>in</strong> the proof of<br />

1<br />

Theorem 1, then there exists t 2<br />

≥ t 1<br />

, sufficiently large such<br />

that for all t<br />

∗<br />

≥ t and for t t ∗<br />

Δ<br />

≥ , (22) holds and let g () t<br />

2<br />

+<br />

Δ<br />

be replaced by g () t <strong>in</strong> (22), thus<br />

Δ<br />

Δ g () t σ<br />

β (, tt) gtQt () () ≤− w() t + w()<br />

t<br />

2<br />

σ<br />

g () t<br />

γ gt ()<br />

−<br />

α ()( t g ()) t<br />

1 γ σ λ<br />

σ λ<br />

( w ( t)) .<br />

(27)<br />

Multiply<strong>in</strong>g both the sides of (27), with t replaced by s,<br />

by H (t, s) and <strong>in</strong>tegrat<strong>in</strong>g with respect to s from t ∗ to t,<br />

we obta<strong>in</strong><br />

t<br />

∫ ∗ Hts (,) β (, st) gsQs () () Δs≤<br />

2<br />

t<br />

Δ<br />

t<br />

Δ<br />

t g () s σ<br />

−∫<br />

∗H (, tsw ) ( s) Δ s+ ∗Hts (, ) w( s)<br />

s<br />

t<br />

∫<br />

Δ<br />

t<br />

σ<br />

g () s<br />

t<br />

γ gs ()<br />

σ λ<br />

−∫<br />

∗ Hts (, ) ( w( s)) Δs.<br />

t<br />

1 γ σ λ<br />

α ()( s g ()) s<br />

Integrat<strong>in</strong>g by parts formula and us<strong>in</strong>g (23) and (25),<br />

we get<br />

t<br />

∗ ∗<br />

∫ ∗ Hts ( , ) β( st , ) gsQs ( ) ( ) Δs≤ Htt ( , ) wt ( ) +<br />

t<br />

2<br />

1 λ<br />

t hts (, )( Hts (, )) σ γ Htsgs (, ) ( )<br />

(28)<br />

−<br />

σ λ<br />

∫ ∗[ w ( s) −<br />

( w ( s)) ] Δs.<br />

t<br />

σ 1 γ σ λ<br />

g () s α ()( s g ()) s<br />

And apply<strong>in</strong>g Lemma 1, we obta<strong>in</strong><br />

1 λ<br />

(, )( (, ))<br />

−<br />

σ γ (, ) ( ) σ λ<br />

w () s −<br />

( w ()) s<br />

σ 1 γ σ λ<br />

h t s H t s Htsgs<br />

g () s α ()( s g ()) s<br />

α<br />

≤<br />

( γ + 1) g ( s)<br />

γ + 1<br />

( h ( t, s)) ( s) −<br />

γ+<br />

1 γ .<br />

From the last <strong>in</strong>equality and (24), (28), we have<br />

1<br />

( h ( t, s)) α( s)<br />

[ (, s t ) g() s Q() s H(,) t s ] Δs<br />

Htt g s<br />

γ + 1<br />

t<br />

−<br />

∫ β<br />

−<br />

t0<br />

2 γ+<br />

1 γ<br />

(, ) ( γ + 1) ( )<br />

0<br />

∗<br />

∗ ∗ t<br />

≤ ϕ( t ) w( t ) + ∫ ϕ( s) β( s, t ) g( s) Q( s) Δ s T , we have<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!