25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1562 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

Y i2 i < y , i = 1… p,<br />

where, K is the l<strong>in</strong>ear state feedback ga<strong>in</strong>; ∑ x is the state<br />

variables covariance; ∑ is the i th variable of output<br />

covariance ∑ y ;<br />

y i<br />

2<br />

y i is constra<strong>in</strong>t of<br />

Lemma2: Schur complements [25]:<br />

For symmetric matrix:<br />

⎡S<br />

S = ⎢<br />

⎣S<br />

11<br />

21<br />

∑ yi .<br />

The follow<strong>in</strong>g three conditions are equivalent:<br />

1) S < 0<br />

T −1<br />

22 12 11 12 0<br />

2) S 11 < 0 , S − S S S <<br />

−1<br />

T<br />

11 12 22 12 0<br />

3) S 22 < 0 , S − S S S < .<br />

B. Extended MVC 3 Problem and Its LMI Solution<br />

In this work, constra<strong>in</strong>ts on manipulative variables<br />

were <strong>in</strong>cluded <strong>in</strong> the MVC 3 scheme. The extended MVC 3<br />

can be described as:<br />

S<br />

S<br />

12<br />

22<br />

⎤<br />

⎥<br />

⎦<br />

p<br />

m<br />

m<strong>in</strong> qi ∑ yi + rj ∑u j<br />

∑ x, KY , i, Uj<br />

i= 1 j=<br />

1<br />

∑ ∑ (6)<br />

s.t. ( A+ BK) ∑ ( A+ BK) T + E∑ E<br />

T = ∑ (7)<br />

x w x<br />

T<br />

yi ϕiC<br />

C ϕi<br />

∑ = ∑ x (8)<br />

T<br />

uj ϕ jK<br />

K ϕ j<br />

∑ = ∑ x (9)<br />

2<br />

i<br />

∑ < y , i = 1... p<br />

(10)<br />

yi<br />

2<br />

j<br />

∑ < u , j = 1... m. (11)<br />

uj<br />

The ma<strong>in</strong> design target of the extended MVC 3 is<br />

obta<strong>in</strong><strong>in</strong>g l<strong>in</strong>ear feedback ga<strong>in</strong> K to make object function<br />

(6) m<strong>in</strong>imum, additionally, to make the steady-state<br />

control outputs and the covariance of manipulative<br />

variables satisfy a set of bounds respectively. The above<br />

problem can be converted to a convex form of LMI as<br />

follows.<br />

Theorem 1: If and only if ∃W, X ≥ 0 and Y i ,<br />

U , i = 1... p, j = 1... m s.t.<br />

j<br />

p m<br />

m<strong>in</strong> qY i i+<br />

rU j j<br />

XWYU , , j j i= 1 j=<br />

1<br />

∑ ∑ (12)<br />

⎡<br />

T<br />

X −E∑ E AX BW⎤<br />

w +<br />

s.t. ⎢<br />

⎥><br />

0<br />

T<br />

⎢⎣( AX + BW ) X ⎥⎦<br />

(13)<br />

⎡ Yi<br />

ϕiCX⎤ ⎢<br />

0<br />

T T ⎥ ><br />

⎣( CX ) ϕi<br />

X ⎦<br />

⎡ U j ϕ jW⎤ ⎢ T T ⎥ > 0<br />

⎢⎣<br />

W ϕ j X ⎥⎦<br />

(14)<br />

(15)<br />

Y i2 i < y , i = 1... p<br />

(16)<br />

U j2 j < u , j = 1... m<br />

(17)<br />

−1<br />

Then, u= Kx( k) = WX x( k)<br />

is the extended MVC 3 l<strong>in</strong>ear<br />

feedback controller of system (2), satisfy<strong>in</strong>g covariance<br />

constra<strong>in</strong>ts.<br />

Proof: If the closed-loop system (2) is stable, the steady<br />

state covariance matrix can be expressed<br />

T<br />

as ∑ x = lim{E[ x( k) x ( k)]}<br />

, and ∑<br />

x<br />

satisfies (7). From<br />

k→∞<br />

the def<strong>in</strong>ition of covariance, it is easily to get the<br />

T<br />

T<br />

expression ∑ = ϕC∑ x C ϕ , ∑ = ϕ K∑ x K ϕ ,<br />

where,<br />

yi i i<br />

2<br />

u j<br />

∑<br />

yi<br />

< y i<br />

,<br />

uj j j<br />

2<br />

j<br />

∑ < u .From Lemma 1,<br />

∃∑ x < X , Makes the state covariance constra<strong>in</strong>t (7) is<br />

T<br />

equivalent to LMI (13). Let ϕiCXC ϕ i < Yi, i = 1, … p ,<br />

T<br />

ϕjKXK ϕ j < U j, j = 1, … m , and Y i2 i < y , i = 1... p ,<br />

U j2 j < u , j = 1... m.Then:<br />

p<br />

m<br />

p m<br />

qi ∑ yi + rj ∑u j ≤ qY i i + rU j j<br />

i= 1 j= 1 i= 1 j=<br />

1<br />

∑ ∑ ∑ ∑ .<br />

Then, m<strong>in</strong>imiz<strong>in</strong>g the function<br />

ensure the object function<br />

p m<br />

qY i i + rU j j<br />

i= 1 j=<br />

1<br />

p<br />

m<br />

qi yi + rj uj<br />

i= 1 j=<br />

1<br />

∑ ∑ will<br />

∑ ∑ ∑ ∑ be<br />

m<strong>in</strong>imized too. Still use Lemma 1, (14)-(17) can be<br />

derived.<br />

From the def<strong>in</strong>ition of extended MVC 3 problem,<br />

controller feedback solution K ∗ can be solved by<br />

∗ ∗ ∗−1<br />

K = W X with LMI. Where, W ∗ and X ∗ denote the<br />

optimal solution matrices of the extended MVC 3 problem.<br />

Conditions (14)-(17) are exactly that required to<br />

determ<strong>in</strong>e the feasibility of the extended MVC 3 problem.<br />

If the problem turns out to be <strong>in</strong>feasible, then the<br />

2 2<br />

bound<strong>in</strong>g region def<strong>in</strong>ed by yi<br />

and u j terms should be<br />

enlarged.<br />

C. Performance Evolution Based on Extended MVC 3<br />

For closed-loop system (5) the multi-variable form of<br />

LQG performance benchmarks can be def<strong>in</strong>ed as<br />

T<br />

T<br />

J<br />

LQG<br />

= E(<br />

y Qy)<br />

+ λ E( u Ru)<br />

. In order to evaluate<br />

controllers under constra<strong>in</strong>s, the covariance constra<strong>in</strong>s are<br />

<strong>in</strong>cluded <strong>in</strong> the LQG performance evaluation benchmarks.<br />

New performance evolution is exactly an advanced<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!