25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1499<br />

∇ f ( x ) d =∇f( x ) d −δ<br />

∇f( x ) A ( A A ) e<br />

k T k k T k k T T −1<br />

0 k k k k k<br />

1 k T k kT k 1 k T k<br />

≤− ( d0 ) Hkd0 + b p ≤− ( d0)<br />

Hkd0 < 0.<br />

2 2<br />

Thereby, we know that d<br />

k is a feasible descent<br />

k<br />

direction of (1) at x .<br />

III. GLOBAL CONVERGENCE OF ALGORITHM<br />

In this section, firstly, it is shown that Algorithm A<br />

given <strong>in</strong> section 2 is well-def<strong>in</strong>ed, that is to say, for every<br />

k, that the l<strong>in</strong>e search at Step 5 is always successful<br />

Lemma 3.1 The l<strong>in</strong>e search <strong>in</strong> step 5 yields a stepsize<br />

1 i<br />

t<br />

k<br />

= ( ) for some f<strong>in</strong>ite i = i( k)<br />

.<br />

2<br />

Proof.<br />

It is a well-known result accord<strong>in</strong>g to Lemma 2.2. For<br />

(11),<br />

k k 2 k k k T k<br />

s f( x + td + t d<br />

) − f( x ) −αt∇f( x ) d<br />

k T k 2 k k T k<br />

=∇ f ( x ) ( td + t d<br />

) + o( t) −αt∇f( x ) d<br />

k T k<br />

= (1 −α) t∇ f( x ) d + o( t).<br />

For (12), if<br />

k k<br />

j∉ I( x ), gj<br />

( x ) < 0;<br />

k k k T k<br />

j∈ I( x ), gj( x ) = 0, ∇ gj( x ) d < 0,<br />

so we have<br />

k k 2 k k T k 2 k<br />

g<br />

j<br />

( x + td + t d<br />

) =∇ f( x ) ( td + t d<br />

) + o( t)<br />

k T k<br />

= αt∇ g<br />

j<br />

( x ) d + O( t).<br />

In the sequel, the global convergence of Algorithm A<br />

is shown. For this reason, we make the follow<strong>in</strong>g<br />

additional assumption.<br />

H3.1 { x k } is bounded, which is the sequence<br />

generated by the algorithm, and there exist constants<br />

2 T<br />

2<br />

b≥ a > 0 , such that a|| y|| ≤ y Hk<br />

y ≤ b|| y||<br />

, for all k<br />

n<br />

and all y∈ R .<br />

S<strong>in</strong>ce there are only f<strong>in</strong>itely many choices for sets<br />

k k k k k<br />

Jk<br />

⊆ I , and the sequence { d0, d1<br />

, d , v , b } is bounded,<br />

we can assume without loss of generality that there exists<br />

a subsequence K, such that<br />

x → x , H → H , d →d , d →d , d<br />

→d<br />

,<br />

b b v v J J k K<br />

k * k * k * k *<br />

k * 0 0<br />

k * k *<br />

→ , → ,<br />

k<br />

≡ ≠ Φ, ∈ ,<br />

where J is a constant set.<br />

(15)<br />

Theorem 3.2 The algorithm either stops at the KKT<br />

k<br />

po<strong>in</strong>t x of the problem (1) <strong>in</strong> f<strong>in</strong>ite number of steps, or<br />

generates an <strong>in</strong>f<strong>in</strong>ite sequence { x k } any accumulation<br />

*<br />

po<strong>in</strong>t x of which is a KKT po<strong>in</strong>t of the problem (1).<br />

Proof.<br />

The first statement is easy to show, s<strong>in</strong>ce the only<br />

stopp<strong>in</strong>g po<strong>in</strong>t is <strong>in</strong> step 3. Thus, assume that the<br />

algorithm generates an <strong>in</strong>f<strong>in</strong>ite sequence { x k }, and (15)<br />

holds. Accord<strong>in</strong>g to Lemma 2.2, it is only necessary to<br />

*<br />

prove that d =<br />

0<br />

0<br />

. Suppose by contradiction that<br />

*<br />

d0 ≠ 0 .<br />

Then, from Lemma 2.2, it is obvious that d * is welldef<strong>in</strong>ed,<br />

and it holds that<br />

* T * * T * *<br />

∇ f ( x ) d < 0, ∇ g<br />

j<br />

( x ) d < 0, j∈I( x ) ⊆ J (16)<br />

Thus, from (16), it is easy to see that the step-size t k<br />

obta<strong>in</strong>ed <strong>in</strong> step 5 are bounded away from zero on<br />

K , i.<br />

e.<br />

t ≥ t* = <strong>in</strong>f{ t , k∈ K} > 0, k∈ K.<br />

(17)<br />

k<br />

k<br />

In addition, from (11) and Lemma 2.2, it is obvious<br />

k<br />

that { f ( x )} is monotonous decreas<strong>in</strong>g. So, accord<strong>in</strong>g to<br />

*<br />

assumption H 2.1, the fact that { x<br />

k } → x implies that<br />

k<br />

*<br />

f( x ) → f( x ), k →∞ .<br />

(18)<br />

So, from (11), (16), (17), it holds that<br />

k *<br />

k T k<br />

0= lim( f ( x ) − f( x )) ≤lim( αt ∇f( x ) d )<br />

x∈K<br />

x∈K<br />

1<br />

* T *<br />

≤ αt*<br />

∇ f( x ) d < 0,<br />

2<br />

k<br />

which is a contradiction thus lim d0<br />

= 0 . Thus, x * is a<br />

x→∞<br />

KKT po<strong>in</strong>t of (1).<br />

IV. THE RATE OF CONVERGENCE<br />

Now we discuss the convergent rate of the algorithm,<br />

and prove that the sequence { x<br />

k } generated by the<br />

algorithm is one-step super-l<strong>in</strong>early convergent under<br />

some mild conditions without the strict complementarily.<br />

For this purpose, we add some regularity hypothesis.<br />

H 4.1 The sequence { x<br />

k } generated by Algorithm A is<br />

bounded, and possess an accumulation po<strong>in</strong>t x * , such<br />

* *<br />

that the KKT pair ( x , u ) satisfies the strong secondorder<br />

sufficiency conditions, i.e.,<br />

T 2 * *<br />

d ∇<br />

xxL( x , u ) d > 0,<br />

n<br />

* T<br />

∀d∈Ω<br />

{ d∈R : d ≠ 0, ∇ gI<br />

+<br />

( x ) d = 0},<br />

+<br />

*<br />

Lxu ( , ) = f( x) + ug( x), I = { j∈ I: u > 0}.<br />

∑<br />

j∈I<br />

j j j<br />

Lemma 4.1 Suppose that assumptions H 2.1-H 3.1 hold,<br />

then,<br />

1) There exists a constant ζ > 0 , such that<br />

T −1<br />

|| ( Ak<br />

Ak) || ≤ ζ ;<br />

2) lim d k 0<br />

= 0; lim d k = 0; lim d<br />

k = 0;<br />

k→∞ k→∞ k→∞<br />

3)<br />

k k k k 2<br />

|| d || ∼|| d0<br />

||, || d<br />

|| = O(|| d || ),<br />

.<br />

k k k 3 k k 2<br />

|| d − d0||= O(|| d0<br />

|| ), || d<br />

|| = O(|| d || ).<br />

Proof.<br />

1) By contradiction, suppose that sequence<br />

T 1<br />

{|| ( Ak<br />

Ak) − ||} is unbounded, then there exists an <strong>in</strong>f<strong>in</strong>ite<br />

subset K, such that<br />

T −1<br />

|| ( A A ) || →∞, ( k∈<br />

K).<br />

k<br />

k<br />

K<br />

k<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!