25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1452 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

M of the adaptive RBF neural network filter<strong>in</strong>g is<br />

determ<strong>in</strong>ed.<br />

The dimension m of chaotic time series is<br />

calculated by the way of G- P algorithms, and<br />

the delay time τ is calculated by the selfcorrelation<br />

method. For the overall description<br />

of the dynamics characteristic of the orig<strong>in</strong>al<br />

system by the Takens' delay-coord<strong>in</strong>ate phase<br />

reconstruct theory, a chaotic series demand<br />

m≥ 2d<br />

+ 1 variances at least, so the number of<br />

the <strong>in</strong>put nerve cells of the adaptive RBF neural<br />

network filter<strong>in</strong>g is M = m ; The reconstruction<br />

phase space vector number is 200, Then, the<br />

200 phase space vectors to make a simple<br />

normalized, the normalized as<br />

[ x() t −mean( x())]/[max( t x()) t − m<strong>in</strong>( x())]<br />

t<br />

,<br />

t = 1, 2, 200 , and mak<strong>in</strong>g the value is owned by a range<br />

of -1 / 2 to 1/2.<br />

Step2) The adaptive filter<strong>in</strong>g is <strong>in</strong>itialized and the<br />

weights are vested the <strong>in</strong>itial values. RBF neural network<br />

vector weight<strong>in</strong>g parameters w is <strong>in</strong>itialized, where the<br />

weight vector w <strong>in</strong> each component take random function<br />

between 0 and 1; and the learn<strong>in</strong>g rate η is <strong>in</strong>itialized at<br />

the same time, where η = 0.0002 . β and γ are the<br />

learn<strong>in</strong>g rate adjustment factors, 0< β < 1, γ > 1 , for<br />

example, β = 0.75, γ = 1.05 .<br />

Step3) Us<strong>in</strong>g the above the <strong>in</strong>itialization network and<br />

the pretreatment traffic flow time series, the first tra<strong>in</strong><strong>in</strong>g<br />

network is carried out.<br />

Step4) The error is calculated. If the error is <strong>in</strong> the<br />

scope of the permission, the error is calculated and it<br />

turns <strong>in</strong>to Step4), otherwise it cont<strong>in</strong>ues; the error<br />

function formula:<br />

200<br />

1 2<br />

E( θ ) = ( y( t) − y( t))<br />

(9)<br />

∑<br />

2 t = 1<br />

Set the maximum error is E max<br />

= 0.035 , if E < Emax<br />

,<br />

the storage RBF neural network parameter use w ;<br />

otherwise, then a second tra<strong>in</strong><strong>in</strong>g network will be<br />

required.<br />

Step5) Adjust the adaptive learn<strong>in</strong>g rate If A previous<br />

tra<strong>in</strong><strong>in</strong>g error is recorded as En<br />

− 1<br />

, the current error is<br />

recorded as E n<br />

, then Calculate the ratio of E<br />

n<br />

to En<br />

− 1<br />

,<br />

En<br />

Sett<strong>in</strong>g constants k = 1.04 , if > k = 1.04 , then<br />

En<br />

− 1<br />

substitute βη for η to reduce learn<strong>in</strong>g rate; otherwise,<br />

replace η with γη to <strong>in</strong>crease learn<strong>in</strong>g rate.<br />

Step6) In the adaptive RBF neural network filter<strong>in</strong>g for<br />

the chaotic time series prediction <strong>in</strong> Figure 1,<br />

x( k) = x( t)<br />

t = 1, 2, , N is the <strong>in</strong>put, yk ˆ( ) = xt ˆ( ) is the<br />

output.<br />

Introduce nonl<strong>in</strong>ear feedback <strong>in</strong>to the weight<strong>in</strong>g<br />

formal to adopt Chaos Mechanisms, due to the nonl<strong>in</strong>ear<br />

feedback is vector form of weight<strong>in</strong>g variables. In order<br />

to facilitate understand<strong>in</strong>g, respectively, gives the vector<br />

w and its weight<strong>in</strong>g formal, as follows.<br />

Note<br />

Δ w l ( t+ 1) = w l ( t+ 1) −w l ( t)<br />

,<br />

ji ji ji<br />

which represents the current value of weight<strong>in</strong>g variables,<br />

then<br />

1<br />

Δ w l ( t+ 1) = w l ( t+ 1) − w l () t = −ηδ l+<br />

() t x<br />

l () t<br />

ji ji ji j i<br />

In order to speed up the learn<strong>in</strong>g process, <strong>in</strong> the right to<br />

l<br />

jo<strong>in</strong> a momentum term αΔw () t , then<br />

l 1<br />

( 1) l +<br />

( ) l ( ) l<br />

ji<br />

t ηδ<br />

j<br />

t<br />

i<br />

t α<br />

ji<br />

( t)<br />

ji<br />

Δ w + = − x + Δw (10)<br />

where α is <strong>in</strong>ertia factor. As a constant, the weight of<br />

amendments is l<strong>in</strong>ear, not <strong>in</strong>troduce chaos mechanism.<br />

then we Introduce a nonl<strong>in</strong>ear feedback (chaos<br />

mechanism on the right):<br />

1<br />

Δ w l ( t+ 1) = − ηδ l+<br />

( t) x l ( t) + g( Δ w l ( t+<br />

1)) (11)<br />

ji j i ji<br />

Expand this equation <strong>in</strong>to scalar form as follow:<br />

l l+<br />

1 l l<br />

⎧Δ wji ( t+ 1) = − ηδ<br />

j<br />

( t) xi ( t) + g( Δwji<br />

( t))<br />

⎪<br />

l l+<br />

1<br />

l l<br />

⎪Δ wji ( t+ 1 + τ) =− ηδ<br />

j<br />

( t+ τ) xi ( t+ τ) + g( Δ wji<br />

( t+<br />

τ))<br />

⎪<br />

l l+<br />

1<br />

l l<br />

⎪Δ wji ( t+ 1+ 2 τ ) = − ηδ<br />

j<br />

( t+ 2) xi ( t+ 2 τ ) + g( Δ wji<br />

( t+<br />

2 τ ))<br />

⎨<br />

⎪<br />

⎪ l l+<br />

1<br />

l<br />

⎪<br />

Δ wji ( t+ 1 + ( m− 1) τ ) =− ηδ<br />

j<br />

( t+ ( m− 1) τ ) xi<br />

( t+ ( m−1) τ )<br />

⎪ l<br />

⎩<br />

+ g(<br />

Δwji<br />

( t+ ( m−1) τ ))<br />

(12)<br />

where, feedback can take a variety of vector functions,<br />

for example:<br />

2<br />

g( x) = tanh( px)exp( − qx )<br />

or<br />

g( x) = pxexp( − q x)<br />

,<br />

<strong>in</strong> the study, p = 0.7 , q = 0.1.<br />

Step7) Us<strong>in</strong>g the new learn<strong>in</strong>g rate <strong>in</strong> Step5) and RBF<br />

network parameters with nonl<strong>in</strong>ear feedback <strong>in</strong> Step6) to<br />

calculate the new value, and tra<strong>in</strong> network aga<strong>in</strong>, then get<br />

the error and enter <strong>in</strong>to Step4), repeated tra<strong>in</strong><strong>in</strong>g until the<br />

relative error <strong>in</strong> traffic meet E < Emax<br />

.<br />

Step8) Output of each stored network parameters and<br />

tra<strong>in</strong><strong>in</strong>g error curve.<br />

V. EXAMPLE ANALYSIS AND CONCLUSIONS<br />

A. Model and Data<br />

In this paper, the chaotic time series is the object of<br />

study of the numerical simulation <strong>in</strong> Lorenz dynamic<br />

system. In 1963, the meteorologist Lorenz describe the<br />

evolution of the weather by three-dimensional<br />

autonomous equations; when the parameter σ = 10 ,<br />

8<br />

r = 28 , b = , the long-term changes <strong>in</strong> the weather<br />

3<br />

unpredictable, that is, the system presents a chaotic state,<br />

and for the first time given a strange attractor. The<br />

attractors are shown <strong>in</strong> Figure 2 (a), Figure 2 (b), Figure 2<br />

(c) and Figure 2 (d):<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!