25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1628 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

Microwave<br />

method<br />

Neutron method<br />

Jil<strong>in</strong> prov<strong>in</strong>ce developed WSY - 100 microwave<br />

corn moisture meter<br />

Nanj<strong>in</strong>g university developed SHD - 1 type of<br />

neutron moisture gauge<br />

II. THEORY<br />

The absolute permittivity divided by the permittivity of<br />

free space is small for samples because of the air gaps<br />

between particles <strong>in</strong> the conta<strong>in</strong>er. Therefore, we adopt a<br />

coaxial cyl<strong>in</strong>der arrangement <strong>in</strong> the design of the<br />

capacitive sensor to ensure the plates’ effective area is<br />

large enough. The electrodes of the sensor are<br />

asymmetrical <strong>in</strong> that the <strong>in</strong>ner electrode is enveloped by<br />

the external one. This geometry is very effective <strong>in</strong><br />

prevent<strong>in</strong>g human body <strong>in</strong>duction. The design of the<br />

capacitive sensor is shown <strong>in</strong> Figure 1.<br />

The corn sample is placed <strong>in</strong> the media cavity between<br />

the two plate sensors. Changes <strong>in</strong> relative permittivity<br />

correspond<strong>in</strong>g to different corn moisture contents cause<br />

variations <strong>in</strong> capacitance allow<strong>in</strong>g the moisture content to<br />

be estimated.<br />

L<br />

R 1<br />

R 2<br />

external electrode<br />

media cavity<br />

<strong>in</strong>ner electrode<br />

Figure 1. capacitive sensor schematic<br />

The cyl<strong>in</strong>der height is L ; the external surface radius of<br />

<strong>in</strong>ner cyl<strong>in</strong>der is R<br />

1<br />

; the <strong>in</strong>ner surface radius of external<br />

cyl<strong>in</strong>der is R<br />

2<br />

. If L >> R2 − R1<br />

, the edge effect of<br />

cyl<strong>in</strong>drical ends can be ignored.<br />

The capacitance of the sensor can be calculated from<br />

the formula [5] :<br />

C<br />

2πε<br />

L<br />

ln R R<br />

= (1)<br />

2 1<br />

Permittivity is understood to represent the relative<br />

complex permittivity. The permittivity relative to free<br />

space, or the absolute permittivity divided by the<br />

permittivity of free space [6] .<br />

ε<br />

r<br />

ε<br />

ε<br />

= (2)<br />

0<br />

After the sample is placed <strong>in</strong>to the sensor the<br />

capacitance [7] is:<br />

C<br />

2πε ε L<br />

r 0<br />

= (3)<br />

R2<br />

It can be seen from the above formula that the changes<br />

of capacitance and relative dielectric constant of corn are<br />

l<strong>in</strong>early related. S<strong>in</strong>ce relative dielectric constant will<br />

change with corn moisture content, the latter can be<br />

obta<strong>in</strong>ed from the measured capacitance.<br />

When the corn relative dielectric constant changes<br />

capacitance changes<br />

∆<br />

ε r<br />

Sensitivity for constant<br />

So<br />

∆C<br />

and ∆ε<br />

r<br />

ln<br />

R<br />

( ε<br />

r<br />

+ ∆ε<br />

r ) L<br />

−10<br />

∆ C = × 10<br />

R2<br />

1.8ln<br />

R<br />

ε<br />

rL<br />

− × 10<br />

R2<br />

1.8ln<br />

R<br />

1<br />

1<br />

1<br />

1<br />

−10<br />

∆ε<br />

rL<br />

× 10<br />

R2<br />

1.8ln<br />

∆C<br />

R1<br />

K = =<br />

∆ε<br />

∆ε<br />

r<br />

L<br />

= × 10<br />

R2<br />

1.8ln<br />

R<br />

r<br />

−10<br />

−10<br />

(4)<br />

(5)<br />

is l<strong>in</strong>ear relationship. For moisture<br />

content corn M , when the corn moisture content<br />

changes ∆ M , relative dielectric constant changes ∆ ε<br />

r<br />

,<br />

causes the capacitance change is ∆ C ,therefore<br />

is l<strong>in</strong>ear relationship.<br />

∆C<br />

also ∆M<br />

III. MEASUREMENT CIRCUIT<br />

Hardware structure diagram of corn moisture<br />

measurement system is shown <strong>in</strong> figure 2. The ma<strong>in</strong> parts<br />

are the ma<strong>in</strong> control circuit, capacitance detection circuit,<br />

temperature detection circuit and RS232 communication<br />

circuit.<br />

Capacitive sensor<br />

Temperature<br />

detection circuit<br />

Capacitance<br />

detection circuit<br />

M S P 4 3 0 F1<br />

3 5<br />

scre e n<br />

R S 232<br />

Communication<br />

circuit<br />

Figure2 Measur<strong>in</strong>g system structure diagram<br />

Epistatic mach<strong>in</strong>e<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!