25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1439<br />

L<br />

L<br />

Let v = v = a , φ<br />

M, v M,<br />

w<br />

M ,<br />

= b<br />

w w<br />

, thus we must<br />

prove <strong>in</strong>f<br />

w( a⇒bw) ≤( a⇒ <strong>in</strong>f<br />

wbw)<br />

. On the one hand,<br />

<strong>in</strong>f w<br />

b w<br />

≤ b w<br />

, thus a⇒bw ≥( a⇒ <strong>in</strong>f<br />

wbw)<br />

for each w,<br />

thus <strong>in</strong>f<br />

w( a⇒bw) ≥( a⇒ <strong>in</strong>f<br />

wbw)<br />

. On the other hand if<br />

z ≤( a⇒ b w<br />

) for each w, then z∗a ≤ bw<br />

for each w,<br />

z∗a ≤ <strong>in</strong>f w<br />

b w<br />

, z ≤( a⇒ <strong>in</strong>f<br />

wbw)<br />

. Thus ( a⇒ <strong>in</strong>f<br />

wbw)<br />

is<br />

the <strong>in</strong>fimum of all ( a⇒<br />

b w<br />

). So (U19) holds.<br />

For (U20), we need to verify<br />

<strong>in</strong>f<br />

w( aw ⇒ bw) = (sup<br />

w<br />

aw<br />

⇒ b)<br />

. Indeed, sup w<br />

≥ a w<br />

, thus<br />

(sup<br />

w<br />

aw ⇒b) ≤( aw<br />

⇒ b)<br />

, hence<br />

(sup<br />

w<br />

aw ⇒b) ≤<strong>in</strong>f w( aw<br />

⇒ b)<br />

, If z ≤ aw<br />

⇒ b for all w ,<br />

then aw<br />

≤( z ⇒ b)<br />

for all w, then sup<br />

w<br />

aw<br />

≤( z ⇒ b)<br />

,<br />

z ≤(sup waw<br />

⇒ b)<br />

, so sup w<br />

a w<br />

⇒ b is the <strong>in</strong>fimum. So<br />

(U20) holds.<br />

F<strong>in</strong>ally we verify (U21), we need to verify<br />

<strong>in</strong>f<br />

w( a∨ bw) = a∨ <strong>in</strong>fwbw<br />

. Indeed, a ≤ a∨ bw<br />

, thus<br />

a ≤<strong>in</strong>f w( a∨ bw)<br />

; similarly, <strong>in</strong>fwbw ≤<strong>in</strong>f w( a∨ bw)<br />

, thus<br />

a∨<strong>in</strong>fwbw ≤<strong>in</strong>f w( a∨ b)<br />

. Conversely, let z ≤ a∨ bw<br />

for<br />

all w , we prove z ≤ a∨ <strong>in</strong>f w<br />

b w<br />

.<br />

Case 1: Let a ≤ <strong>in</strong>f w<br />

b w<br />

. Then z ≤ bw<br />

for each w ,<br />

z ≤ <strong>in</strong>f w<br />

b w<br />

and z ≤ a∨ <strong>in</strong>f w<br />

b w<br />

.<br />

Case 2: Let a ≥ <strong>in</strong>f w<br />

b w<br />

. Then for some w 0<br />

, a ≥ b w0<br />

,<br />

thus z ≤ a and z ≤ a∨ <strong>in</strong>f w<br />

b w<br />

.<br />

So we prove the soundness of axioms.<br />

Theorem 6 (Soundness of deduction rules) (1) For<br />

arbitrary formulas φ, ψ , safe-structure M and evaluation<br />

L L L<br />

v , ψ ≥ φ ∗ φ → ψ . In particular, if<br />

M, v M, v M,<br />

v<br />

L<br />

L<br />

L<br />

= → = 1<br />

M, v<br />

M,<br />

v L<br />

then ψ 1<br />

M ,<br />

=<br />

v L<br />

.<br />

L L L<br />

(2) Consequently, ψ φ φ ψ<br />

M M M<br />

φ φ ψ<br />

≥ ∗ → , thus if<br />

φ, φ → ψ are then ψ is 1 L<br />

-true <strong>in</strong> M.<br />

(3) If φ is 1 L<br />

-true <strong>in</strong> M then Δ φ is 1 L<br />

-true <strong>in</strong> M .<br />

(4) If φ is 1 L<br />

-true <strong>in</strong> M then ( ∀ x)<br />

φ is 1 L<br />

-true <strong>in</strong> M.<br />

Proof. (1) is just as <strong>in</strong> propositional calculus.<br />

To prove (2) put φ = aw, ψ = bw, <strong>in</strong>f<br />

w<br />

w<br />

w<br />

aw<br />

= a. We<br />

have to prove <strong>in</strong>f<br />

w( aw ⇒bw) ≤<strong>in</strong>fw aw ⇒ <strong>in</strong>fwbw<br />

.<br />

Observe the follow<strong>in</strong>g:<br />

<strong>in</strong>f( aw ⇒bw) ≤( aw ⇒bw) ≤( a⇒ bw)<br />

,<br />

thus <strong>in</strong>f<br />

w( aw ⇒bw) ≤<strong>in</strong>f w( a⇒ bw)<br />

. It rema<strong>in</strong>s to prove<br />

<strong>in</strong>f<br />

w( a⇒bw) ≤ a⇒ <strong>in</strong>fwbw, this is holds from Theorem<br />

5.<br />

L<br />

(3) If φ is 1 L<br />

-true <strong>in</strong> M then φ<br />

M<br />

= 1L<br />

, so<br />

L<br />

L<br />

Δ φ =Δ φ = . Then (3) holds.<br />

1<br />

M, v<br />

M,<br />

v L<br />

L<br />

M<br />

φ ′<br />

′<br />

,<br />

}<br />

L<br />

M<br />

L<br />

M<br />

(4) Be<strong>in</strong>g φ = <strong>in</strong>f{ φ ,v<br />

| v M − evaluation}<br />

≤ <strong>in</strong>f{<br />

Mv| v ≡ v = ( ∀ x) φ } , So (4) holds.<br />

So we can get the follow<strong>in</strong>g soundness theorem.<br />

L<br />

Theorem 7 (Soundness) Let L is l<strong>in</strong>early ordered<br />

ŁΠG − -algebra and φ is a formula <strong>in</strong> J, if φ , then φ is<br />

L<br />

L-tautology, i.e. φ = 1 . M L<br />

Similarly, we can get the follow<strong>in</strong>g strong soundness<br />

theorem.<br />

Def<strong>in</strong>ition 10 Let T be a theory, L be a l<strong>in</strong>early ordered<br />

ŁΠG − -algebra and M a safe L-structure for the language<br />

of T. M is an L-model of T if all axioms of T are 1 L<br />

-true<br />

<strong>in</strong> M, i.e. φ = 1 L<br />

<strong>in</strong> each φ ∈ T .<br />

Theorem 8 (Strong Soundness) Let T be a theory, L is<br />

l<strong>in</strong>early ordered ŁΠG − -algebra and φ is a formula <strong>in</strong> J,<br />

L<br />

if T φ ( φ is provable <strong>in</strong> T), then φ<br />

M<br />

= 1L<br />

for each<br />

l<strong>in</strong>early ordered ŁΠG − -algebra L and each L-model M<br />

of T.<br />

Proof. In fact, from the proof of Theorem 5, for each<br />

L-model M of T, the axioms are true, and the formulas <strong>in</strong><br />

T are true, from the proof of Theorem 6, the deduction<br />

rules preserve true. So the theorem holds.<br />

Theorem 9 (Deduction Theorem) Let T be a theory,<br />

φ, ψ are closed formulas. Then ( T ∪φ)<br />

ψ iff<br />

T Δφ →ψ<br />

.<br />

Proof. Sufficiency: Let T Δφ →ψ<br />

, from φ<br />

( φ∈ ( T ∪ φ)<br />

), then Δ φ by necessitation, so we can get<br />

ψ by MP rules.<br />

Necessity: Let m is the proof length from T ∪ φ}<br />

to ψ ,<br />

we prove by <strong>in</strong>duction for the length m.<br />

When m = 1 , ψ ∈T<br />

∪φ∪Axm(C ∀ ) , if ψ = φ , The<br />

result holds. If ψ ∈ T or ψ is axiom, from Lemma2 (2),<br />

we have ψ →( Δφ → ψ)<br />

, then by ψψ , →( Δφ→ ψ)<br />

, we<br />

get Δφ → ψ , thus T Δφ →ψ<br />

.<br />

Assume that the result holds when m≤<br />

k , i.e. we get<br />

γ at k step, then T Δφ → γ . Now Let m= k + 1.<br />

If ψ is obta<strong>in</strong>ed from MP rule by the above results<br />

γγ , → ψ <strong>in</strong> the proof sequence, then by <strong>in</strong>duction<br />

hypothesis, we get T Δφ → γ, T Δφ →( γ →ψ)<br />

.<br />

From Lemma 3, we can get<br />

T ( Δφ& Δφ) →( γ &( γ →ψ))<br />

. Be<strong>in</strong>g<br />

T ( Δφ) &( Δφ)<br />

≡ Δφ<br />

, so T Δφ →( γ &( γ →ψ))<br />

.<br />

From lemma 2 (4) we have ( γ & ( γ →ψ)<br />

→ ψ , so we<br />

get T Δφ →ψ<br />

by the hypothetical syllogism.<br />

If ψ is obta<strong>in</strong>ed from necessitation rule by the above<br />

step γ <strong>in</strong> the proof sequence, i.e. Δ γ = ψ , then by<br />

<strong>in</strong>duction hypothesis, we get T Δφ →γ<br />

.<br />

T Δ( Δφ →γ)<br />

, from (U16) we can get T ΔΔφ → Δγ<br />

,<br />

from (U15) we can get Δφ<br />

→ΔΔ φ , thus by the<br />

hypothetical syllogism we can get T Δφ →Δγ<br />

, i.e.<br />

T Δφ →ψ<br />

.<br />

If ψ is obta<strong>in</strong>ed from generalization rule by the above<br />

step γ <strong>in</strong> the proof sequence, i.e. ( ∀ x)<br />

γ = ψ , then by<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!