25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1534 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

∗<br />

t<br />

ϕ s β s t g s q s p s s<br />

t0 3<br />

∫<br />

() (, ) ()(() − ()) Δ 0on [ t<br />

4<br />

4<br />

, ∞ ) . And then there are<br />

two cases of Theorem 3. As <strong>in</strong> the proof of Theorem 3, if<br />

the case 1 holds, we get a contradiction with (33) ; if the<br />

case 2 holds, we obta<strong>in</strong> lim xt ( ) = 0 . This completes the<br />

t→∞<br />

proof.<br />

In Theorem 4, let g (t) =1 and H ( ts , ) = ( t− s) m<br />

, we<br />

have the follow<strong>in</strong>g result.<br />

Corollary 6 Assume that (H1) - (H5) hold, and m ≥ 1 ,<br />

for all sufficiently largeT ∗ , we have<br />

1 t<br />

m<br />

∗<br />

limsup ( ) ( , )( ( ) ( ))<br />

m ∫ t−s β sT qs − ps Δ s=∞.<br />

t→∞<br />

t0<br />

t<br />

Then every solution of (5) is either oscillatory on [ t , ∞)<br />

0 T<br />

or tends to zero.<br />

IV. EXAMPLES<br />

In this section, we give some examples to illustrate our<br />

ma<strong>in</strong> results. Def<strong>in</strong>e<br />

⎧1 , δ ( t) ≥ t,<br />

ξ () t = ⎨ γ<br />

⎩ρ<br />

(, tt), δ() t ≤ t.<br />

0<br />

∗<br />

∞<br />

1 γ<br />

β (, tT )<br />

Note that ∫ Δ t ( α( t))<br />

=∞, implies lim = 1.<br />

t0<br />

t→∞<br />

ξ () t<br />

Example 1 Consider the nonl<strong>in</strong>ear neutral perturbed<br />

dynamic equation<br />

( t (( x( t) ± x( τ ( t))) ) )<br />

t + 1<br />

Δ<br />

+ F( tx , ( δ( t))) = Gtx ( , ( δ( t)), x),<br />

γ−1 1<br />

Δ γ Δ<br />

(35)<br />

for t ∈[1, ∞)<br />

T<br />

, where γ is the quotient of odd positive<br />

<strong>in</strong>tegers. Let<br />

α<br />

k(1 + δ ( t)) 1<br />

t δ () t ξ()<br />

t t<br />

γ<br />

γ−1 2 γ<br />

() t = t , F(, t u) = ( + + u ) u ,<br />

2 γ<br />

4<br />

γ<br />

γ+<br />

2<br />

1 k(1 + δ ( t))<br />

u<br />

ct () = , Gtuv (, , ) =<br />

,<br />

2 γ<br />

2 2<br />

t+ 1 2 t δ () t ξ()( t u + v + 1)<br />

where k is a positive constant. Then<br />

2<br />

Qt () = k 2 t ξ () t .<br />

t0 t0<br />

1 γ γ 1 γ<br />

S<strong>in</strong>ce ∫ ∞ Δ t ( α( t))<br />

= ∫ ∞ Δ t t<br />

−<br />

=∞, hence the conditions<br />

(H1) - (H5) are clearly satisfied. And,<br />

t<br />

∗<br />

α()<br />

s<br />

limsup ∫ ( sβ<br />

(, sT ) gsQs () () − ) Δs<br />

t→∞<br />

T<br />

γ+<br />

1 γ<br />

( γ + 1) s<br />

k 1<br />

t Δs<br />

= ( − )limsup ,<br />

γ + 1 ∫ =∞<br />

t→∞<br />

T<br />

2 ( γ + 1)<br />

s<br />

t<br />

∗<br />

α()<br />

s<br />

limsup ∫ ( sβ<br />

( sT , ) gs ( )( qs ( ) − ps ( )) − ) Δs<br />

t→∞<br />

T<br />

γ+<br />

1 γ<br />

( γ + 1) s<br />

k 1<br />

t Δs<br />

= ( − )limsup ,<br />

γ + 1 ∫ =∞<br />

t→∞<br />

T<br />

2 ( γ + 1)<br />

s<br />

γ + 1<br />

if k > 2( γ + 1) . Thus it follows from Corollary 1 that<br />

every solution of (35) + is oscillatory on [1, ∞)<br />

T<br />

if k ><br />

γ + 1<br />

2( γ 1) ,<br />

+ and it follows from Corollary 4 that every<br />

solution of (35) − is either oscillatory on [1, ∞)<br />

T<br />

or tends<br />

1<br />

to zero if k > 2( γ 1) γ +<br />

+ .<br />

Example 2 Consider the nonl<strong>in</strong>ear neutral perturbed<br />

dynamic equation<br />

1<br />

t x t − x τ t<br />

2 + s<strong>in</strong> t<br />

Δ<br />

+ F( t, x( δ( t))) = G( t, x( δ( t)), x ).<br />

23 Δ 53 Δ<br />

( (( ( ) ( ( ))) ) )<br />

2<br />

(36)<br />

23 2<br />

for t ∈[2, ∞)<br />

T<br />

, where α() t = t , γ=53, c() t = 1( 2+<br />

s<strong>in</strong> t)<br />

Let<br />

Ftu 1 4 2 5 3<br />

(, ) = ( + ) ,<br />

tξ<br />

() t<br />

t + u u<br />

and<br />

11 3<br />

1 u<br />

Gtuv (, , ) =<br />

.<br />

2 4<br />

2 tξ<br />

( t) ( u + v + 2)<br />

Then qt () − pt () = 12 tξ<br />

() t . The conditions (H1) - (H5)<br />

are clearly satisfied. For all t > s ≥ 2 , let m=2, we have<br />

1 t<br />

2<br />

∗<br />

limsup<br />

2 ∫ ( t− s) β ( sT , )( qs ( ) − ps ( )) Δs<br />

t→∞<br />

2<br />

t<br />

2<br />

1 t ( t−<br />

s)<br />

= limsup<br />

t<br />

2 ∫ Δs<br />

→∞<br />

2<br />

t 2s<br />

1 t s t 1 t−<br />

2<br />

= limsup[ s s ] .<br />

t→∞<br />

2 ∫ Δ +<br />

2 ∫ Δ − =∞<br />

2<br />

t 2 2s t<br />

Thus it follows from Corollary 6 that every solution of<br />

(36) is either oscillatory on [2, ∞)<br />

T<br />

or tends to zero.<br />

IV. CONCLUSIONS<br />

To <strong>in</strong>vestigate the oscillatory and asymptotic behavior<br />

for a certa<strong>in</strong> class of second order nonl<strong>in</strong>ear neutral<br />

perturbed dynamic equations on time scales. This paper<br />

proposed some new sufficient conditions for oscillation<br />

of such dynamic equations on time scales were<br />

established. The results not only improve and extend<br />

some known results <strong>in</strong> the literature, but also unify the<br />

oscillation of second order nonl<strong>in</strong>ear neutral perturbed<br />

differential equations and second order nonl<strong>in</strong>ear neutral<br />

perturbed difference equations. In particular, the results<br />

are essentially new under the relaxed conditions for the<br />

parameter function.<br />

ACKNOWLEDGMENT<br />

if<br />

k<br />

γ + 1<br />

> 2( γ + 1) . Also,<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!