25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1500 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

In view of the boundedness of { x k } and J<br />

k<br />

be<strong>in</strong>g a<br />

subset of the f<strong>in</strong>ite set I = {1, 2, , m}<br />

as well as<br />

Lemma 2.1, we know that there exists an <strong>in</strong>f<strong>in</strong>ite <strong>in</strong>dex<br />

'<br />

set K ⊆ K such that<br />

' '<br />

T<br />

k k k k<br />

k<br />

x → x, J ≡ J , ∀k∈K , det( A A ) ≥ε, ε ≥ ε.<br />

As a result,<br />

T<br />

lim( ) ( T<br />

A A =∇g x) ∇g ( x),<br />

'<br />

k∈K<br />

k k '<br />

'<br />

J J<br />

T<br />

det( ∇g <br />

'( x) ∇g '( x)) ≥ ε > 0.<br />

J<br />

J<br />

T −1<br />

Hence, we obta<strong>in</strong> T<br />

|| ( A ) || || <br />

k<br />

Ak → ∇g '( x) ∇ g '( x) ||,<br />

J J<br />

T −1<br />

this contradict || ( Ak<br />

Ak) || →∞, ( k∈ K).<br />

So the first<br />

conclusion 1) follows.<br />

k<br />

2) We firstly show that lim d0<br />

= 0 .<br />

k →∞<br />

k<br />

We suppose by contradiction that lim d0<br />

≠ 0, then<br />

k →∞<br />

there exist an <strong>in</strong>f<strong>in</strong>ite <strong>in</strong>dex set K and a constant σ > 0<br />

k<br />

such that || d0<br />

|| > σ holds for all k∈<br />

K.<br />

Tak<strong>in</strong>g notice<br />

of the boundedness of { x<br />

k } , by tak<strong>in</strong>g a subsequence if<br />

necessary, we may suppose that<br />

k <br />

'<br />

x → x, Jk<br />

≡ J , ∀k∈<br />

K.<br />

Us<strong>in</strong>g Taylor expansion, we analyze the first search<br />

<strong>in</strong>equality of Step 5, comb<strong>in</strong><strong>in</strong>g the proof of Theorem 3.2,<br />

k<br />

the fact that x → x * ,( k →∞ ) implies that it is true.<br />

k<br />

k<br />

The proof of limd<br />

= 0; limd = 0 are elementary<br />

k→∞<br />

k→∞<br />

from the result of 1) as well as formulas (9) and (10).<br />

3) The proof of 3) is elementary from the formulas (9),<br />

(10) and assumption H2.1.<br />

Lemma 4.2. Let H2.1 to H4.1 holds,<br />

k+<br />

1 k<br />

lim || x − x || = 0 . Thereby, the entire sequence { x<br />

k }<br />

k →∞<br />

* k<br />

converges to x i.e. x → x * , k →∞ .<br />

Proof.<br />

From the Lemma 4.1, it is easy to see that<br />

k+<br />

1 k k 2 k<br />

lim || x − x || = lim(|| tkd + tkd<br />

||)<br />

k→∞<br />

k→∞<br />

k<br />

k<br />

≤ lim(|| d || + || d<br />

||) = 0<br />

k →∞<br />

Moreover, together with Theorem 1.1.5 <strong>in</strong> [4], it shows<br />

k<br />

that x → x * , k →∞<br />

Lemma 4.3 It holds, for k large enough, that<br />

* k<br />

* k *<br />

1) J<br />

k<br />

≡ I( x ) I* , b → uI = ( u ,<br />

* j<br />

j∈I* ), v →( uj, j∈I*<br />

)<br />

k k T k<br />

2) I + ⊆ Lk = { j∈ Jk : g<br />

j( x ) +∇ g<br />

j( x ) d0<br />

= 0} ⊆ Jk.<br />

Proof.<br />

1) Prove J<br />

k<br />

≡ I*<br />

.<br />

On one hand, from Lemma 2.1, we know, for k large<br />

enough, that I *<br />

⊆ J k<br />

. On the other hand, if it doesn’t<br />

hold that J<br />

k<br />

⊆ I*<br />

, then there exist constants j 0<br />

and<br />

β > 0 , such that<br />

*<br />

g<br />

j<br />

( x ) ≤− β < 0, j<br />

0<br />

0<br />

∈ Jk.<br />

k<br />

So, accord<strong>in</strong>g to d 0<br />

→ 0 and the functions g ( x ),<br />

j<br />

( j∈<br />

I ) are cont<strong>in</strong>uously differentiable, for k large<br />

k<br />

enough, if v < 0 , we have<br />

j0<br />

k * T k k * T k<br />

+∇<br />

j0 0<br />

=−<br />

j<br />

+∇<br />

0 j0<br />

0<br />

p ( x ) g ( x ) d v g ( x ) d<br />

j0<br />

1 k<br />

≥− v<br />

j<br />

> 0.<br />

0<br />

2<br />

Otherwise,<br />

k * T k<br />

p ( x ) +∇g ( )<br />

j<br />

j<br />

x d<br />

0<br />

0<br />

0<br />

k * T k 1<br />

k<br />

= g<br />

j<br />

( x ) +∇g ( )<br />

0 j<br />

x d<br />

0 0<br />

≤− β < 0, ( vj<br />

≥0)<br />

0<br />

2<br />

which is contradictory with (8) and the fact j 0<br />

∈ J k<br />

. So,<br />

J<br />

k<br />

≡ I*<br />

(for k large enough).<br />

k<br />

* k *<br />

Prove that b → uI = ( u ,<br />

* j<br />

j∈I* ), v →( uj, j∈ I*<br />

).<br />

k *<br />

For the v →( uj<br />

, j∈I*<br />

) statement, we have the<br />

k<br />

follow<strong>in</strong>g results from the def<strong>in</strong>ition of v ,<br />

k * T −1 T *<br />

v →−−B∇ f( x ) =−( A A ) A ∇ f( x )<br />

* * * *<br />

In addition, s<strong>in</strong>ce x * is a KKT po<strong>in</strong>t of (1), it is<br />

evident that<br />

* *<br />

∇ f( x ) + Au .<br />

* I<br />

= 0, u<br />

* I<br />

= −B * *<br />

∇ f( x )<br />

T −1 T *<br />

i.e. uI<br />

=−( A<br />

* *<br />

A* ) A*<br />

∇ f( x ).<br />

k<br />

Otherwise, from (8), the fact that d0 → 0 implies that<br />

k k k k<br />

*<br />

∇ f ( x ) + Hkd0 + Akb = 0, b →−B*<br />

∇ f( x ) = uI<br />

.<br />

*<br />

The claim holds.<br />

2) For<br />

Furthermore, it has<br />

*<br />

lim( k k<br />

x , d ) ( x , 0)<br />

0<br />

k →∞<br />

k *<br />

uI+ uI+<br />

x→∞<br />

= , we have<br />

Lk<br />

*<br />

⊆ I( x ) .<br />

lim = > 0 , so the proof is<br />

f<strong>in</strong>ished.<br />

In order to obta<strong>in</strong> super-l<strong>in</strong>ear convergence, a crucial<br />

requirement is that a unit step size is used <strong>in</strong> a<br />

neighborhood of the solution. This can be achieved if the<br />

follow<strong>in</strong>g assumption is satisfied.<br />

H4.2 Let<br />

2 k k k k<br />

|| (<br />

xxLx ( , uJ ) H) || (|| ||)<br />

k k<br />

d o d<br />

∇ − = , where<br />

= +∑ .<br />

k<br />

k<br />

Lxu ( , ) f( x) u g( x)<br />

Jk<br />

Jk<br />

j<br />

j∈Jk<br />

Lemma 4.4 Suppose that Assumption H 2.1 to H 4.2<br />

are all satisfied. Then, the step size <strong>in</strong> Algorithm A<br />

always one, i.e. tk<br />

≡ 1, if k is large enough.<br />

Proof.<br />

It is only necessary to prove that<br />

f ( x k + d k + d k ) ≤ f( x k ) + α∇f( x k ) T d<br />

k , (19)<br />

k k k<br />

g ( x + d + d ) ≤0, j∈I.<br />

(20)<br />

j<br />

*<br />

For (12) if j ∈ I \ I we have g ( ) 0<br />

*<br />

j<br />

x < ,<br />

k k<br />

k<br />

*<br />

( x , d , d ) →( x , 0, 0)( k →∞ ), then, it is easy to<br />

obta<strong>in</strong> g ( k k k<br />

j<br />

x + d + d ) ≤0<br />

holds.<br />

If j ∈ I*<br />

we have<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!