25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1583<br />

max<br />

⎧<br />

n<br />

m<br />

C P<br />

∑⎨xr i i<br />

+ ∑ ( βik Rik + γik Rik<br />

)<br />

⎩<br />

−1<br />

⎧⎪<br />

( I − L)<br />

wxβγ<br />

= C ra<br />

⎨<br />

⎪⎩<br />

QV ( ≥ B( α ))<br />

≥1−α<br />

i= 1 k=<br />

1<br />

st .<br />

C. Parameter Uncerta<strong>in</strong>ty<br />

Most of the parameter such as the expected returns and<br />

covariance are estimated from noisy data. Hence, these<br />

estimates are no accurate. As a result, if the model<br />

amplifies any estimation errors, the portfolios yield<strong>in</strong>g<br />

will extremely perform badly <strong>in</strong> out-of-sample tests. So it<br />

needs to solve this problem. And the robust optimization<br />

is a good choice. Generally speak<strong>in</strong>g, robust optimization<br />

aims to f<strong>in</strong>d solutions to a given optimization problems<br />

with uncerta<strong>in</strong> parameters which could achieve good<br />

objective values for all or most of realizations of the<br />

uncerta<strong>in</strong> parameters. We will assume that the estimate<br />

covariance is reasonably accurate such that there is no<br />

uncerta<strong>in</strong>ty about it. This assumption is justified s<strong>in</strong>ce the<br />

estimation error <strong>in</strong> expectation by far outweighs the<br />

estimation error <strong>in</strong> covariance, see e.g. [14]. So, <strong>in</strong><br />

decision-mak<strong>in</strong>g uncerta<strong>in</strong>ty is unknown. There are many<br />

factors that affect the decision-mak<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g human<br />

psychology state, external <strong>in</strong>formation <strong>in</strong>put, which is<br />

usually difficult to be derived <strong>in</strong> terms of probabilistic or<br />

stochastic measurement. The well known B–S model has<br />

a number of assumptions such as the riskless <strong>in</strong>terest rate<br />

and the volatility are constant, which hardly catch human<br />

psychology state and external <strong>in</strong>formation <strong>in</strong>put although,<br />

B–S model has been improved.<br />

Now, it needs to <strong>in</strong>troduce robust optimization and<br />

portfolio selection [15]. The robust counterpart of an<br />

uncerta<strong>in</strong> mathematical program is a determ<strong>in</strong>istic worst<br />

case formulation <strong>in</strong> which model parameters are assumed<br />

to be uncerta<strong>in</strong>, but symmetrically distributed over a<br />

bounded <strong>in</strong>terval known as an uncerta<strong>in</strong>ty set U. The<br />

structure and scale of U is specified by the modeler,<br />

typically based on statistical estimates. Structure refers to<br />

the geometry or shape of the constra<strong>in</strong>t set U, such as<br />

ellipsoidal or polyhedral. Scale refers to the magnitude of<br />

the deviations of the uncerta<strong>in</strong> parameters from their<br />

nom<strong>in</strong>al values; it can be thought of as the size of the<br />

structure def<strong>in</strong><strong>in</strong>g U. A general form of the robust<br />

counterpart to an uncerta<strong>in</strong> LP is given as<br />

T<br />

max ⎡m<strong>in</strong> c x ⎤<br />

⎣<br />

( )<br />

Subject to Ax≤b, ∀( A,b,c)<br />

∈ U<br />

There are two forms for transfer the robust <strong>in</strong>to a set,<br />

l<strong>in</strong>ear or Ellipsoidal.<br />

(1) L<strong>in</strong>ear <strong>in</strong>terval<br />

In the robust optimization framework, the true value<br />

a is not certa<strong>in</strong> which is given by the follow<strong>in</strong>g equation<br />

i<br />

⎦<br />

− ^<br />

ai<br />

= ai+ a iηi, ∀ i<br />

where a −<br />

i is an estimate for a i<br />

, and a ^<br />

i is the maximum<br />

distance that a i<br />

deviated from a − i and ηi<br />

is a random<br />

⎫<br />

⎬<br />

⎭<br />

variable which is bounded by and symmetrically<br />

distributed with<strong>in</strong> the <strong>in</strong>terval[-1,1]. That is, the true<br />

value ai<br />

is symmetrically distributed with respect to i on<br />

− ^ − ^<br />

⎡<br />

⎤<br />

the <strong>in</strong>terval ai− a i,ai+<br />

ai<br />

⎢<br />

⎣<br />

⎥<br />

⎦ .<br />

(2) Ellipsoidal uncerta<strong>in</strong>ty sets are given by<br />

2<br />

⎧<br />

−<br />

⎛ ⎞ ⎫<br />

⎜ai<br />

− ai<br />

⎟<br />

⎪<br />

2<br />

a:<br />

⎝ ⎠ ⎪<br />

⎨ ∑<br />

^ 2 ≤Ω ⎬<br />

⎪ a ⎪<br />

i<br />

⎪⎩<br />

⎪⎭<br />

where Ω is a user def<strong>in</strong>ed parameter and adjusts the<br />

trade-off between robustness and optimality.<br />

Next, the problem is how to transfer the uncerta<strong>in</strong> set<br />

to a series equations or <strong>in</strong>-equations.<br />

Let J be the number of parameters. For Soyster’s and<br />

Ben-Tal and Nemirovski’s model[16],<br />

or<br />

∑<br />

i<br />

i<br />

a<br />

∑<br />

i<br />

^<br />

i<br />

−<br />

i<br />

− a<br />

a<br />

η =<br />

i<br />

Bertsimas and Sim (2004) relaxed this condition by<br />

def<strong>in</strong><strong>in</strong>g a new parameter Γ (the budget of uncerta<strong>in</strong>ty) as<br />

the number of uncerta<strong>in</strong> parameters that take their worst<br />

− ^<br />

case value ai<br />

− ai<br />

.Therefore ηi<br />

≤Γ,such that Γ ∈⎡⎣ 0, J ⎤⎦ ,<br />

then the optimal problem can be rewritten as<br />

−<br />

^<br />

⎛<br />

⎞<br />

max⎜∑ai<br />

wi + m<strong>in</strong>∑aiη<br />

iwi⎟<br />

⎝<br />

ηi<br />

⎠<br />

S.t w = 1<br />

∑<br />

∑ i<br />

i<br />

η ≤Γ<br />

wi<br />

≥0, −1≤ηi<br />

≤1, ∀ i<br />

It also can be rewritten as<br />

−<br />

^<br />

⎛<br />

⎞<br />

max⎜∑ai<br />

wi −max∑<br />

ai<br />

ηiwi<br />

⎟<br />

⎝<br />

ηi<br />

⎠<br />

S.t w = 1<br />

∑<br />

∑ i<br />

i<br />

η ≤Γ<br />

wi<br />

≥0,0≤ηi<br />

≤1, ∀ i<br />

However, this problem is not well-def<strong>in</strong>ed. Because it<br />

is difficult to obta<strong>in</strong> a different optimal solution for each<br />

return realization, there are multiple ways to specify the<br />

l<strong>in</strong>ear set. A nature choice is to construct an ellipsoidal<br />

uncerta<strong>in</strong>ty set<br />

T −<br />

Θ = r : r − μ Σ<br />

1 r − μ ≤ δ<br />

2<br />

r<br />

{ ( ) ( ) }<br />

~<br />

Accord<strong>in</strong>g to EI Ghaoui et al [17],when r has f<strong>in</strong>ite<br />

second-order moments, then, we can choice<br />

δ p<br />

= 1− p<br />

for p ∈[0,1 ) and δ = +∞<br />

for p = 1 , it means the follow<strong>in</strong>g probabilistic<br />

guarantee for any portfolio w :<br />

=<br />

J<br />

J<br />

a −<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!