25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1561<br />

axis of the rod angle to the center of rod mass, the angle<br />

of the rod from the vertical upward direction respectively.<br />

A. State Space Model of L<strong>in</strong>ear S<strong>in</strong>gle Inverted<br />

Pendulum<br />

The method of this work is based on l<strong>in</strong>ear constant<br />

state space model as:<br />

x<br />

= Ax + Bu<br />

. (1)<br />

y = Cx + Du<br />

The mathematical model of s<strong>in</strong>gle <strong>in</strong>verted pendulum can<br />

be obta<strong>in</strong>ed by mechanism analysis [1], shown <strong>in</strong> (2),<br />

where, u , is cart angular velocity. x andθ , are the same<br />

as shown <strong>in</strong> Fig 1.<br />

⎛x<br />

⎞ ⎛0 1 0 0⎞⎛x<br />

⎞ ⎛0⎞<br />

⎜<br />

x<br />

⎟ ⎜<br />

0 0 0 0<br />

⎟⎜ x<br />

⎟ ⎜<br />

1<br />

⎟<br />

⎜ ⎟<br />

<br />

= ⎜ ⎟⎜ ⎟+<br />

⎜ ⎟u<br />

⎜ θ ⎟ ⎜0 0 0 1⎟⎜θ<br />

⎟ ⎜0⎟<br />

⎜<br />

θ ⎟ ⎜ ⎟<br />

0 0 29.4 0 ⎜θ<br />

⎟ ⎜ ⎟<br />

⎝ ⎠<br />

<br />

⎝ ⎠<br />

⎝ ⎠ ⎝3⎠<br />

⎛x<br />

⎞<br />

⎜<br />

x 1 0 0 0 x<br />

⎟<br />

⎛ ⎞ ⎛ ⎞ ⎛0⎞<br />

y = ⎜ ⎟<br />

⎜ = + u<br />

θ<br />

⎟ ⎜<br />

0 0 1 0<br />

⎟⎜θ<br />

⎟ ⎜<br />

0<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

⎜ <br />

θ ⎟<br />

⎝ ⎠<br />

B. Controllability & Observability Analysis of S<strong>in</strong>gle<br />

Inverted Pendulum<br />

The controllability and observability of a system is<br />

prerequisite for analysis and controller design. Here,<br />

n−<br />

Uc = B AB A 1 B and<br />

Controllability matrix ( )<br />

n<br />

observability matrix Uo ( C CA CA −1<br />

)<br />

T<br />

(2)<br />

= were<br />

obta<strong>in</strong>ed and then rank criterion was employed to<br />

analysis its controllability and observability. It has been<br />

proved that the system as (2) has both controllability and<br />

observability.<br />

C. Stability Analysis of S<strong>in</strong>gle Inverted Pendulum<br />

The extended MVC 3 performance evolution and MPC<br />

tun<strong>in</strong>g system is based on the stabilization system. Hence,<br />

Stability analysis is necessary. The poles of the <strong>in</strong>verted<br />

pendulum as (2) are ( 5.4222 − 5.4222 0 0)<br />

, where<br />

positive real root appears. It shows that the system as (2)<br />

is <strong>in</strong>stable and this requires a stabilizer before design<strong>in</strong>g a<br />

MPC controller for the generalized controlled system [23].<br />

III. MPC PERFORMANCE EVOLUTION AND TUNING<br />

METHODE BASED ON EXTENDED MVC 3<br />

A. Introductions of LMI and Lemmas<br />

• About LMI:<br />

Assume a l<strong>in</strong>ear matrix <strong>in</strong>equality (LMI) can be stated<br />

as: F( x) = F0 + x1F1+⋅⋅⋅+ xmFm<br />

< 0 .Where, variable<br />

x constitutes a convex set, LMI can be solved us<strong>in</strong>g the<br />

method of convex optimization problem [24].<br />

1) Feasible solution of LMI:<br />

If there exists x makes, F( x ) < 0 , established, then the<br />

LMI is feasible [24].This can be expressed us<strong>in</strong>g the<br />

follow<strong>in</strong>g formulation:<br />

m<strong>in</strong>. t<br />

.<br />

s.. tF( x)<br />

< tI<br />

2) M<strong>in</strong>imization problem of LMI:<br />

The problem can be stated as a optimality problem that<br />

m<strong>in</strong>imize the largest eigenvalue, λ , of the matrix<br />

Gx ( ) under <strong>in</strong>equality constra<strong>in</strong>t H( x ) < 0 [24]:<br />

st ..<br />

Another expression is as:<br />

T<br />

m<strong>in</strong> λ<br />

G < λI<br />

.<br />

< 0<br />

( x)<br />

H ( x)<br />

T<br />

m<strong>in</strong> c x<br />

,<br />

st .. F < 0<br />

( x)<br />

where, c x is object function.<br />

• Lemmas:<br />

Consider a l<strong>in</strong>ear time-<strong>in</strong>variant state-space system:<br />

x( k + 1) = Ax( k) + Bu( k) + Ew( k)<br />

, (3)<br />

y( k) = Cx( k)<br />

where, x (k)<br />

, u ( k ) , y( k ) are state variable, manipulative<br />

variable and control output variable respectively,<br />

A , B , C and E are process model matrix, w ( k)<br />

denotes<br />

stationary, Gaussian noise with zero mean and covariance<br />

as ∑ w .<br />

State feedback controller can be expressed as:<br />

u( k) = Kx ( k)<br />

. (4)<br />

Then, the closed-loop system can be written as:<br />

x( k + 1) = ( A+ BK) x( k) + Ew ( k)<br />

. (5)<br />

Lemma1: LMI of MVC 3 [22]:<br />

For system (5), ∃ stabiliz<strong>in</strong>g K and ∑x ≥ 0 s.t.<br />

∑ , = 1... p<br />

yi i<br />

T<br />

T<br />

x w x<br />

T<br />

∑ y = ϕ<br />

i iC∑<br />

xC<br />

ϕi<br />

2<br />

∑ y < y , 1<br />

i i i = … p<br />

( A+ BK) ∑ ( A+ BK)<br />

+ E∑ E = ∑<br />

If and only if ∃ W, X > 0and Yi , = 1... ps.t.<br />

⎡<br />

T<br />

X − E∑<br />

E AX BW⎤<br />

w +<br />

⎢<br />

⎥><br />

0<br />

T<br />

⎢⎣( AX + BW ) X ⎥⎦<br />

⎡ Yi<br />

ϕiCX⎤ ⎢<br />

( ) T 0<br />

T<br />

⎥ ><br />

⎢⎣<br />

CX ϕi<br />

X ⎥⎦<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!