25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1564 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

(21) is the solution to problem (20). F<strong>in</strong>ally, certa<strong>in</strong>ty<br />

equivalence between problems (20) and (19) completes<br />

the proof.<br />

Theorem 2: Let hypotheses 1-3 hold; then the solution<br />

of K ∗ , to problem (12)-(17) is co<strong>in</strong>cident with the<br />

solution of appropriate weighted <strong>in</strong>f<strong>in</strong>ite horizon MPC<br />

problem (19).<br />

Proof. Problem (6)-(11) can be exactly restated as the<br />

existence of Lagrange multiplier, , s.t.<br />

1 1<br />

s.t. ⎢ 0<br />

T ⎥<br />

⎣S1 I1⎦<br />

⎡ T2 S2⎤ ⎢ 0<br />

T ⎥ ><br />

⎣S2 I2⎦<br />

T<br />

λ<br />

i<br />

, γ<br />

A PA 1 P1 Q 0<br />

j<br />

⎧<br />

p m ⎫<br />

T1 ρ1I1<br />

⎪<br />

m<strong>in</strong> { ∑qY<br />

i i+ ∑ rU j j +<br />

K, ∑x≥ 0, Yi, U<br />

⎪<br />

j i= 1 j=<br />

1<br />

⎪<br />

⎪<br />

⎪<br />

p<br />

m<br />

2 2 ⎪<br />

T2 ρ2I2<br />

⎪∑λi( Y i− yi ) + ∑γ<br />

j( U j −uj<br />

)} ⎪<br />

i= 1 j=<br />

1<br />

T<br />

⎪<br />

⎪ where, 1 ( ) ( )<br />

max ⎨<br />

T<br />

s. t. ( A+ BK) ∑ ( A+<br />

BK)<br />

⎬. (22)<br />

λi≥0, γ j≥0<br />

x<br />

T<br />

T<br />

⎪<br />

⎪ S2<br />

RK B PBK B PA<br />

T<br />

⎪ + E∑ w E =∑x<br />

⎪ LQR <strong>in</strong>verse-optimal Control, ,<br />

⎪<br />

T T<br />

⎪<br />

⎪ ϕiC∑ x C ϕi = Yi<br />

⎪<br />

⎪<br />

T T<br />

⎪<br />

∃P<br />

≥ 0 , Q ≥ 0 , R > 0 , P 1 > 0 , s.t.<br />

⎪⎩<br />

ϕ jK∑ x K ϕ j = U j ⎪⎭<br />

If rewrite the m<strong>in</strong>imization objective function as:<br />

p<br />

m<br />

T<br />

T<br />

m<strong>in</strong> { ∑( qi + λi) Y i+ ∑ ( rj + γ j) U j}<br />

RK B PBK B PA<br />

K, ∑x≥ 0, Yi, U j i= 1 j=<br />

1<br />

,<br />

p<br />

m<br />

T<br />

2 2<br />

A PA<br />

− ∑λiyi − ∑γ<br />

ju<br />

1 P1<br />

Q<br />

j<br />

i= 1 j=<br />

1<br />

λ i≥ γ j ≥ .This <strong>in</strong>dicates<br />

∗<br />

λ i γ j dependent solutions, K ( λi, γ j)<br />

,co<strong>in</strong>cide<br />

⎡ T1 S1⎤ ⎢ 0<br />

T ⎥ ><br />

⎣S1 I1⎦<br />

i = qi + i i = rj + j).<br />

T T T T<br />

1<br />

Because of the variance constra<strong>in</strong>ts (16) and (17),<br />

T<br />

problem cannot be equivalent to the <strong>in</strong>f<strong>in</strong>ite<br />

1 ≤ ρ1I1<br />

⎡ T1 S1⎤ and Lemma 2, ⎢ 0<br />

Theorem 2 guarantees that the MVC 3 T ⎥ ><br />

problem would<br />

⎣S1 I1⎦<br />

∗<br />

T<br />

T<br />

K λi<br />

γ j such that there to T 1 − S 1 S 1 > 0 , that is 1 I 1 SS 1 1<br />

⎡ T2 S2⎤ λ , γ j . But, weighted matrix Q , R of <strong>in</strong>f<strong>in</strong>ite<br />

⎢ 0<br />

T ⎥ ><br />

⎣S2 I2⎦<br />

T<br />

T<br />

2 = + +<br />

T2 ≤ ρ2I2<br />

LQR <strong>in</strong>verse-optimal control can be described as:<br />

If ∃P<br />

≥ 0 , Q ≥ 0 , R > 0 , P 1 > 0 and symmetric<br />

m<strong>in</strong> ρ 1 + ρ 2<br />

(23) PPT , , , T, QR ,<br />

then, it is clear that the above three assumptions are<br />

satisfied for all values of 0, 0<br />

that all ,<br />

with the solution to some <strong>in</strong>f<strong>in</strong>ite horizon MPC problem<br />

( λ λ , γ γ<br />

MVC 3<br />

horizon MPC problem (19). Theorem 2 shows that<br />

<strong>in</strong>troduc<strong>in</strong>g variance constra<strong>in</strong>ts to MVC 3 problem (21),<br />

is exactly the reason to adjust the MPC controller weight<br />

matrix, Q , R .<br />

generate a l<strong>in</strong>ear feedback ( , )<br />

exists a feasible solution for <strong>in</strong>f<strong>in</strong>ite horizon MPC<br />

problem. Unfortunately, the exact form of this <strong>in</strong>f<strong>in</strong>ite<br />

horizon MPC problem is unclear, unless the MVC 3<br />

solution procedure provides us with the optimal<br />

Lagrangians i<br />

horizon MPC can be solved by given feedback ga<strong>in</strong>, K .<br />

Then, it can be updated with the Riccati equation.<br />

E. LQR Inverse-Optimal Control and Its LMI Method<br />

matrices, T 1 , T 2 that<br />

1 1 2<br />

⎡ T S ⎤ ><br />

(24)<br />

(25)<br />

− − < (26)<br />

< (27)<br />

< , (28)<br />

S = A+ BK P A+ BK − P+ Q+ K RK ,<br />

= + + .Then, through the solution of<br />

QR,can be obta<strong>in</strong>ed.<br />

LQR <strong>in</strong>verse-Optimal Control [27] is described as:<br />

T T T T<br />

A PA − P −K RK − K B PBK + Q = 0 (29)<br />

+ + = 0 (30)<br />

− < , (31)<br />

where, (31) ensures that ( A, Q ) is detectable. As (29)<br />

cannot be converted to the LMI form, it can be<br />

constructed as,<br />

S = A PA −P −K RK − K B PBK + Q ,<br />

where, T 1 is symmetric matrix; ρ 1 is a scalar; I 1 is a<br />

unit matrix of appropriate dimension. From LMI theory<br />

is<br />

T<br />

equivalent<br />

ρ > .Then, approximate<br />

solution of equation (29), R , P , can be gotten through<br />

choos<strong>in</strong>g a small enough ρ 1 . Similarly,<br />

S RK B PBK B PA<br />

Equation (26) is the rewrit<strong>in</strong>g of (31). Then, the LMI<br />

form of LQR <strong>in</strong>verse-Optimal Control can be gotten.<br />

Equations (29)-(31) are constructed to LMI form to get<br />

parameters QR. , However, Matrix Q here is nondiagonal<br />

matrix, practical application is <strong>in</strong>convenience.<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!